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1 The Group SL2(Z) and the fundamental do-
main

Definition 1. For a commutative Ring R we define GL2(R) as the following
set:

GL2(R) :=

{
A =

(
a b
c d

)
for which det(A) = ad− bc ∈ R∗

}
. (1)

We define SL2(R) to be the set of all B ∈ GL2(R) for which det(B) = 1.

Lemma 1. SL2(R) is a subgroup of GL2(R).

Proof. Recall that the kernel of a group homomorphism is a subgroup. Observe
that det is a group homomorphism det : GL2(R) → R∗ and thus SL2(R) is its
kernel by definition.

Let R = R. Then we can define an action of SL2(R) on C̄ ( = C∪ {∞} ) by

A.z :=
az + b

cz + d
and A.∞ :=

a

c
, A =

(
a b
c d

)
∈ SL2(R), z ∈ C. (2)

Definition 2. The upper half-plane of C is given by H := {z ∈ C | Im(z) > 0}.

Restricting this action to H gives us another well defined action ”.” : SL2(R)×
H 7→ H called the fractional linear transformation. Indeed, for any z ∈ H the
imaginary part of A.z is positive:

Im(A.z) = Im
(az + b

cz + d

)
= Im

( (az + b)(cz̄ + d)

|cz + d|2
)

=
Im(z)

|cz + d|2
> 0. (3)

Lemma 2. For A =
(
a b
c d

)
∈ SL2(R) the map µA : H→ H defined by z 7→ A.z

is the identity if and only if A = ±I.

Proof. Assume z = az+b
cz+d for all z ∈ H which reduces to cz2 + (d− a)z + b = 0.

Having assumed A =
(
a b
c d

)
is in SL2(R), it follows that the only solutions

satisfying ad− bc = 1 are b = c = 0 and a = d so a = d = ±1 and hence ±I are
the only elements of SL2(R) that act trivially on the upper half plane.
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Definition 3. The full modular group is given by:

Γ := SL2(Z) ≤ SL2(R). (4)

In order to make the group act faithfully on H (recall that this means that there
are no group elements A ∈ Γ\{Id} such that A.z = z, ∀z ∈ H). We define the
modular group Γ̄ := Γ/{±I}.

The fact that Γ is indeed a subgroup of SL2(R) can be verified through check-

ing that the inverse of an element in Γ lies in Γ too:
(
a b
c d

)−1
= 1

ad−bc
(
d −b
−c a

)
and 1

ad−bc = 1 ∈ Z by assumption. Also since Γ is a group it follows that

Γ̄ = Γ/{± I} is a group, as {±I} is normal in Γ.

Definition 4. Let N > 0. Then we define the principle subgroup of level N by

Γ(N) :=

{(
a b
c d

)
∈ SL2(Z)|a ≡ d ≡ 1(mod N), b ≡ c ≡ 0(mod N)

}
. (5)

First we show some basic properties of these subgroups:

Lemma 3. Let N > 0. Then Γ(N) is a normal subgroup of Γ.

Proof. We claim that Γ(N) is the kernel of a group homomorhism ψ and hence
normal. As a candidate we choose ψ as follows:

ψ : SL2(Z)→ SL2(Z/NZ) (6)(
a b
c d

)
7→
(
a (modN) b (modN)
c (modN) d (modN)

)
. (7)

This is indeed a group homomorphism, as it is one in every component. Its
kernel is then exactly Γ(N). We are done.

Remark: For all N > 2, the kernel Γ̄(N) of the homomorphism ψ :
SL2(Z) → SL2(Z/NZ) defined as in Lemma 3 is in fact equal to Γ(N). In-
deed, for N > 2 we have −1 6≡ 1mod(N) and thus −I 6∈ Γ(N).

Definition 5. Let C subgroup of Γ. We call C a congruence subgroup of level
N if C contains Γ(N).

Similarly we may call a subgroup C ′ of Γ̄ a congruence subgroup of level N
if it contains Γ̄(N).

The most important examples of congruence subgroups, Γ0(N) and Γ1(N)
will be defined here but are of little relevance for this lecture:

Γ0(N) :=

{(
a b
c d

)
∈ Γ|c ≡ 0 (modN)

}
(8)

Γ1(N) :=

{(
a b
c d

)
∈ Γ0(N)|a ≡ 1 (modN)

}
. (9)

The fact that these are indeed subgroups with Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ Γ
will not be proven here. We now continue with the most important definition
of the lecture, the fundamental domain.
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Definition 6. Let G be a group acting on a topological space X. A fundamental
domain F for the action of G is a (closed) subset, such that exactly one point
of each orbit is contained in (the interior of) F .

Applying this to our situation we call a closed subset F ⊂ H a fundamental
domain for a subgroup G of Γ if every z ∈ H\F is G-equivalent to one point in
the interior of F (denoted F ◦) and no two points z1, z2 ∈ F ◦ are G-equivalent.

We will prove and describe the fundamental domain of the whole group Γ
itself before turning to subgroups.

Theorem 1. A fundamental domain of Γ under fractional linear transforma-
tions (2) is given by

F := {z ∈ H| − 1

2
≤ Re(z) ≤ 1

2
and |z| ≥ 1}.

Figure 1: Fundamental domain of Γ and approximating γ = T ◦ S ◦ T−1 such
that γ.x ∈ F .

Proof. The idea is to fix any point z ∈ H and then to find a combination of
translations and inversions until z is mapped to F . This process is demonstrated
for some x in Figure 1.

Fix z ∈ H. Define Γ′ to be the subgroup generated by T and S, where T
and S are:

T :=

(
1 1
0 1

)
so that T.z = z + 1, (10)
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S :=

(
0 −1
1 0

)
so that S.z = −1

z
. (11)

Now let γ =
(
a b
c d

)
∈ Γ′. Then by (3) we have Im(γ.z) = Im(z)|cz+d|−2 and

thus Im(γ.z) > 0. By choosing the factors c and d so that |cz+d| is as small as
possible but not zero. This is possible as cz+d must be on the lattice generated
by 1 and z. Hence |cz + d| must be bigger or equal than one of the following:
{|± z+ 0|, | ± z± 1|, |0 +±1|} by construction. But this set is finite hence has a
minimum. So we are able to find a γ such that Im(γ.z) is maximal. In a next
step find a suitable j ∈ N ∪ {0} so that (T jγ).z ∈ {z′ ∈ H| − 1

2 ≤ Re(z) ≤ 1
2}.

Define T jγ =: γ′ and claim that γ′.z lies in F .
If this was not the case, so |γ′.z| < 1, then again by (3) we would have

Im((Sγ′).z) = Im(γ′.z)|γ′.z|−2 > Im(γ′.z) contradicting the maximality re-
quirement we set above. Hence ∃γ ∈ Γ′ such that γ.z ∈ F, ∀z ∈ H.

We now have to prove that no two points in the interior of F share the same
Orbit. For this assume z1, z2 ∈ F and wlog that Im(z2) ≥ Im(z1) and lastly
that there exists an A ∈ Γ so that z2 = A.z1.

Having assumed that it follows that

Im(z2) = Im(A.z1) = Im(z1)|cz1 + d|−2 ≥ Im(z1).

by (3) and hence |cz1 + d|2 ≤ 1. As all entries in A must lie in Z and

Im(z1) ≥
√
3
2 , it follows that the absolute value of c must be less than 2 oth-

erwise 1 ≤ Im(cz1) = Im(cz1 + d) ≤ |cz1 + d|. Moreover, we have |d| − 1
2 ≤

|d+ Re(z)c| ≤ |cz + d| ≤ 1. This slims down the possibilities for A and we can
deal with them case by case.

Case 1: c = 0, d = ±1. By enforcing the ad− bc = 1 constraint we see that
then A or −A must be equal to T j =

(
1 j
0 1

)
. But for A.z1 to lie in F again only

j ∈ {−1, 0, 1} come in question. For j = 0, we have z1 = z2. For j = ±1 recall
the definition of T and we see that z2 and z1 must lie on the boundary lines
Re(z) = ± 1

2 of F and hence not in the interior of F .

Case 2: c = ±1, d = 0. Then z1 lies on the unit circle, as we have |cz1| ≤ 1
and |z1| ≥ 1. To satisfy ad−bc = 1, A has to be of the form A = ±

(
a −1
1 0

)
= T aS

for some a ∈ Z. For |a| > 2 we see that T aS.z1 /∈ F , thus a ∈ {−1, 0, 1}.
For a = 0 we get A = ±S and hence that z1, z2 lie in S1 ∩ F and are

symmetric with respect to iR as |z1| = 1.

For a = 1 we have A = ±TS, but then z1 = 1
2 +

√
−3
2 . The case a = −1 is

similar: We get A = ±ST and z1 = − 1
2 +

√
−3
2 .

Case 3: Suppose c = d = ±1. Since |cz+d| ≤ 1, we see that z1 = − 1
2 +
√
−3
2 ,

as for any other z1 ∈ F we find that | ± z1 ± 1| > 1.
By the condition det(A) = 1 it follows that: a − b = 1 =⇒ b = −1 + a.

And hence of the form A =
(
1 −1+a
1 1

)
= T a

(
0 −1
1 1

)
.

By assumption we want A.z1 ∈ F . One solution is a = 0 but then z1 = z2 =

− 1
2 +

√
−3
2 . For the case a = 1 we see that z2 = z1 + 1 = 1

2 +
√
−3
2 , so all viable

points lie on the boundary again as for any other choice of a one can think of
T a as the map that moves z1 too far away (or by computing it).
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Case 4: c = −d = ±1 and z1 = 1
2 +

√
−3
2 Here we proceed in the same way

as in case 3 and see the same result - viable pairs z1, z2 must lie in the boundary
of F .

We thus conclude: In no case do z1 and z2 belong to the interior unless
A = ±I and z1 = z2. This concludes the proof.

Corollary 1. For any z ∈ F we can give an explicit definition of the Stabilizer
of z under Γ, denoted Γz:

• Γz = {I, S} for z = i.

• Γz = {I, ST, (ST )2} for z = ω := − 1
2 +

√
−3
2 .

• Γz = {I, TS, (TS)2} for z = −ω̄.

• Γz = {±I} for all other z ∈ F .

Corollary 2. The group Γ̄ is generated by the two elements S and T . Hence
any fractional linear transformation can be written as a word in letters S and
T .

Proof. Let again Γ′ be the subgroup of Γ spanned by T and S. Let z be
in the interior of F and A ∈ Γ. Consider A.z ∈ H. By the first part of
the proof of the theorem above we can find a A′ ∈ Γ′ so that (A′A).z ∈ F .
However as z lies in the interior of F its Stabilizer is given by ±I it follows that
A′A = ±I ⇐⇒ A′ = ±A−1. Hence, any A ∈ Γ lies in Γ′ up to a sign, proving
the corollary.

To get a one to one correspondence between the orbits and some modified
set of F we can identify Γ-equivalent points on the boundary of F with each

other. This can be visualized as identifying 1
2 + iy with − 1

2 + iy for any y ≥
√
3
2

and the points on the ”round” part of the boundary with each other, formally
e2πiϑ with e2πi(

1
2−ϑ) for all ϑ between one sixth and one third. This updated F

gives us a one to one correspondence with the the set of Orbits of Γ acting on
H and we denote it by Γ\H.

Definition 7. The points Q ∪ {∞} in H̄ are called cusps.

Lemma 4. Γ permutes the cusps transitively.

Proof. If we show that every rational number a
c lies in the orbit of ∞ we are

done. So assume a
c ∈ Q with a, c ∈ Z then we can solve ad − bc = 1 for d and

b. This gives us a matrix A =
(
a b
c d

)
∈ Γ and by the definition of the fractional

linear transformation (2) we have A.∞ = a
c as desired.

We now turn to fundamental domains of subgroups Γ′ ⊂ Γ of finite index
([Γ : Γ′] = n <∞). Hence Γ =

⊔n
i=1 α1Γ′ with αi ∈ Γ.

Lemma 5. A fundamental domain F ′ of a subgroup Γ′ of Γ is given by F ′ =⋃n
i=1 α

−1
i .F .
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Proof. Similar to the proof of Theorem 1 we first show that every z ∈ H is
Γ′-equivalent to a point in F ′. Therefore, let z ∈ H. By Theorem 1 we can find
some γ ∈ Γ such that γ.z ∈ F . Hence for some i, we have γ = αiγ

′ with γ′ ∈ Γ′

this implies γ′.z = α−1i γ.z ∈ α−1i .F ⊂ F ′. Again we have to show that no two
elements in the interior of F ′ are Γ′-equivalent. Assume that z1, z2 ∈ F ′ and
there exists a γ ∈ Γ′ such that z2 = γ.z1 also choose i, j s.t z1 ∈ α−1i .F and
z2 ∈ α−1j .F . Define f1 := αi.z1 and f2 := αj .z2 but this would also mean that

we have found two Γ-equivalent points in F by f2 = αjγα
−1
i .f1 contradicting

Theorem 1, as f1, f2 ∈ F .

Exercise: Compute a fundamental domain of Γ(2).

2 Different Realizations of H
2.1 H as a quotient of SL2

In this section, we wish to identify H with the quotient SL2(R)/SO2(R). We will
introduce an action of SL2(R) on H and then look at a special Orbit - namely the
one of i. Afterwards we quotient out and define another group action. Theorem
2 then links the two actions and thus completes the statement.

Lemma 6. The group action of SL2(R) on H defined in equation (2) is transi-
tive.

Proof. In order to show it acts transitively we fix any z = x+ iy ∈ H and wish
to find an element A ∈ SL2(R) so that Az.i = z. Define Az by

Az :=
(√

y x√
y

0
√
y−1

)
. (12)

Az lies in the group SL2(R) as it has determinant 1. By computing we see that
Az.i = (

√
yi + x√

y )
√
y = x + iy = z. Hence, we can conclude that such an

element Az exists for all z ∈ H so the group action is transitive.

Lemma 7.

Stab(i) = SO2(R) :=

{(
a b
c d

)
∈ GL2(R)|ATA = I , det(A) = 1

}
.

Proof. Let A =
(
a b
c d

)
∈ SL2(R) so that A.i = i Then we see by (2) that ai+b

ci+d = i,
equivalently ai+b = di+c and because all entries of the matrix are real it follows
that a = d and b = −c which is a necessary and sufficient requirement for A to
lie in SO2(R).

For R, SO2(R) is not a normal subgroup of SL2(R). In order to see this,
we recall that a if a subgroup H of a group G is normal, then for any g ∈ G
and h ∈ H, the product ghg−1 lies in H. In our case this reduces to say-
ing that for A ∈ SL2(R) and M ∈ SO2(R), the subgroup would be normal if
(AMA−1)(AMA−1)T = I. Finding an example where this does not hold is
easy. Thus the quotient SL2(R)/SO2(R) is only a set without induced group
structure. However, a group can act on this set.
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Lemma 8. The group SL2(R) acts through µ on SL2(R)/SO2(R):

µ : SL2(R)× SL2(R)/SO2(R)→ SL2(R)/SO2(R) (13)

(A,MSO2(R)) 7−→ µA(MSO2(R)) = AMSO2(R).

This action is transitive.

Proof. We first show that the group action is well defined: Let MSO2(R) =
NSO2(R) ∈ SL2(R)/SO2(R) be two cosets defined by different elements. Then
M = NV for V ∈ SO2(R).Thus:

µA(MSO2(R)) = AMSO2(R) = ANV SO2(R) (14)

= ANSO2(R) = µA(NSO2(R))

To show that we indeed have a group action observe that I ∈ SO2(R) and thus
µA ◦ µI = µI ◦ µA and µA ◦ µB = µAB which establishes the group action.
TO show transitiveness, we show that for all MSO2(R) ∈ SL2(R)/SO2(R) there
exists a A in SL2(R) so that µA(MSO2(R)) = SO2(R). Define A = M−1 and
compute:

µM−1(MSO2(R) = M−1MSO2(R) = SO2(R). (15)

Theorem 2. There is a bijection ψ between SL2(R)/SO2(R) and H. The map
ψ is defined as follows:

ψ : SL2(R)/SO2(R)→ H (16)

MSO2(R) 7−→M.i .

In particular, the following diagram commutes for all A ∈ SL2(R).

SL2(R)/SO2(R) H

SL2(R)/SO2(R) H

ψ

µA A.

ψ

Proof. We will start by recalling the orbit stabilizer theorem. Assume G is a
group acting on a set X. Then the orbit stabilizer theorem tells us that there is
a bijection between the orbit of x ∈ X and G/Gx where the orbit of x, denoted
orb(x) is defined as {g.x |g ∈ G} and Gx := {g ∈ G |g.x = x}. In fact, the
standard proof of the theorem defines the map φ : G/Gx → orb(x), hGx 7→ h.x
and then shows it is a bijection.

Now we apply this theorem to our situation: G = SL2(R) acts on H by
linear fractional transformations and we have already seen in Lemma 7 that
Gi = SO2(R) and orb(i) = H. This shows that there is indeed a bijection,
which is given by ψ : SL2(R)/SO2(R)→ H, MSO2(R) 7→M.i

This realization is useful when trying to generalize modular forms, as it
allows a generalization of the domain H. See [3] for further reading on this
topic.
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2.2 H as the group SP2(R)
In this section, we want to study another identification of the upper half plane,
this time through symmetric positive definite matrices.

Definition 8. Any n × n matrix is called symmetric positive definite (spd) if
it is symmetric : AT = A, and positive definite: for all v ∈ Rn\{0} the scalar
vTAv is strictly positive. We write A > 0.

Definition 9. The subgroup SP2(R) of GL2(R) is defined by

SP2(R) :=

{(
a b
c d

)
∈ GL2(R) for which A > 0 and det(A) = 1

}
. (17)

Here is a criterion that will make it a lot easier to construct matrices in
SP2(R).

Lemma 9. A =

(
a b
b c

)
∈ SP2(R) ⇐⇒ a > 0 and det(A) = 1.

We define two maps, then show that they are well-defined and each others
inverse.

Definition 10. We define F : H→ SP2(R) by z = x+iy 7→ Fz = 1
y

( 1 −x
−x x2+y2

)
.

Additionally we define ω : SP2(R)→ H byM = ( a bb c ) 7→ ω(M) = 1
a (−b+i) ∈ H.

Lemma 10. The two functions F and ω are both well-defined and each others
inverse, making both maps bijective.

Proof. First, F is well defined by the criterion we stated in Lemma 9: det(Fz) =
1 and 1

y > 0. The map ω is well defined too; again due to our criterion, a > 0.

Therefore ω(S) for S ∈ SP2(R) lies in the upper half plane because the term 1
a i

is strictly positive.
By computing the term ω(Fz) for z = x+ iy we obtain z again:

ω(Fz) = ω
(1

y

(
1 −x
−x x2 + y2

))
= y
(x
y

+ i
)

= z. (18)

Next, if we let M =
(
a b
b c

)
∈ SP2(R) then :

Fω(M) = F 1
a (−b+i)

= a

(
1 b

a
b
a

b2+1
a2

)
=

(
a b

b b2+1
a

)
. (19)

The term b2+1
a is exactly the value we get for c if we fix the entries a and b of

the matrix and enforce det(M) = 1 through ac− b2 = 1.
This proves that the maps are inverses of each other. Thus they are both

bijective.

We have already elaborated how SL2(R) acts on H through the fractional
linear transformations and established that SP2(R) has a bijective correspon-
dence to H. Thus, we can define an action on SP2(R) by going to H and back
again:

α : SL2(R)× SP2(R)→ SP2(R) (20)

(A,M) 7−→ FA.(ω(M)) (21)

However, this definition is tedious and we wish for a more explicit description.
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Lemma 11. Let M =
(
a b
b c

)
∈ SP2(R) and the map ω as above. Then the

number ω(M) ∈ H solves the equivalent equations

aω2 + 2bω + c = 0 ⇐⇒
(
ω
1

)T
M

(
ω
1

)
= 0. (22)

Proof. We use the standard quadratic formula :

−2b±
√

4b2 − 4ac

2a
= − b

a
±
√
b2 − ac
a

=(∗) −b± i
a

= ω(M). (23)

(*) is due to the condition det(M) = 1.
Assume now that z ∈ H solves the equation (22). Then we claim that

z = 1
a (−b+ i). Indeed:

0 = az2 + 2bz + c (24)

= az2 + 2bz +
1 + b2

a
(25)

= a2z2 + 2abz + 1 + b2 (26)

= (az)2 + 2b(az) + 1 + b2 (27)

= v2 + 2bv + 1 + b2 (28)

We solve the equation for v and see that v = (−b± i). Focusing on the v that
lies in in H, we see that

v = az = −b+ i (29)

z =
1

a
(−b+ i) (30)

which shows our claim.

Lemma 12. The group action β of SL2(R) on SP2(R) defined by

β(A,M) := A ∗M = (A−1)TMA−1, (31)

for A ∈ SL2(R) and M ∈ SP2(R) is the same group action as α and thus in
particular transitive.

Proof. We claim that showing that the group actions are the same is equivalent
to showing A.ω(M) = ω(A ∗ M). Indeed, using Lemma 10 for the second
equivalence we see

A.ω(M) = ω(A ∗M)

⇐⇒
ω−1(A.ω(M)) = A ∗M

⇐⇒
FA.ω(M)) = A ∗M

⇐⇒
α(A,M) = β(A,M).
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To prove A.ω(M) = ω(A ∗M), we first define:

A =

(
a b
c d

)
and A ∗M =

(
α β
β γ

)
(32)

θ := ω(A ∗M) := ω

((
a b
c d

)
∗M

)
:= ω

((
α β
β γ

))
and v := A−1.θ. (33)

By computing it follows that v = dθ−b
−cθ+a , using the inverse and the fractional

linear transformation definition.
By Lemma 11, θ solves the equation ( θ1 )T (A−1)TMA−1( θ1 ) = 0. We claim

that it also solves (
v
1

)T
M

(
v
1

)
(cθ + a)2 = 0. (34)

Indeed, A−1( θ1 ) =
(

dθ−b
−cθ+a

)
= (−cθ+ a)

(
dθ−b
−cθ+a

1

)
= (−cθ+ a)

(
v
1

)
and thus the

claim proves correct by plugging in the term we obtained. We are allowed to
divide both sides by (cθ+ a)2 = (−cθ+ a)(cθ+ a) as (−cθ+ a) never vanishes.
Thus, this equation holds true:(

v
1

)T
M

(
v
1

)
= 0. (35)

Lemma 11 tells us that v = ω(M) which then due to our definition v = A−1.θ
implies:

A.(ω(M)) = θ = ω(A ∗M) (36)

showing that A.ω(M) = ω(A ∗M), and thus ending the proof.

This realization of the upper half plane will be useful when studying Siegel
modular forms, as they allow another type of generalization. For further reading
on this topic see for example [4]. This lecture is based on: [1] [2] [5]
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