
MODULAR FORMS : DEFINITIONS AND EXAMPLES

ETIENNE BATELIER AND AUREL PICHOLLET–MUGNIER

1. Definitions of Modular Forms

We dedicate a first section to the rigorous definition of a modular form. We also prove some
useful criteria and basic properties. Recall that SL(2,Z) acts on the upper half plane H via Möbius
transformations. A first step towards the definition of a modular form is to turn this action into
an action of SL(2,Z) on the space of complex-valued function on H. To this end, we introduce the
notation j.

Definition 1.1. For every γ =

(
a b
c d

)
∈ SL(2,Z) and τ ∈ H, we note j(γ, τ) = cτ + d.

Lemma 1.2. For every γ1, γ2 ∈ SL(2,Z), τ ∈ H, j(γ1γ2, τ) = j(γ1, γ2τ)j(γ2, τ).

Proof. A first observation is the following : for every γ =

(
a b
c d

)
∈ SL(2,Z) and τ ∈ H,

γ

(
τ
1

)
=

(
aτ + b
cτ + d

)
= (cτ + d)

(
aτ+b
cτ+d

1

)
= j(γ, τ)

(
γτ
1

)
.

Now, we can compute on the one side :

γ1γ2

(
τ
1

)
= j(γ1γ2, τ)

(
γ1γ2

1

)
.

On the other side,

γ1γ2

(
τ
1

)
= j(γ2, τ)γ1

(
γ2τ
1

)
= j(γ2, τ)j(γ1, γ2τ)

(
γ1γ2τ

1

)
.

Therefore, we identify j(γ1γ2, τ) = j(γ1, γ2τ)j(γ2, τ), as desired.
�

We get an action of SL(2,Z) on the complex-valued functions on H as follows.

Definition 1.3. For every f : H→ C, γ ∈ SL(2,Z) and integer k, we note f [γ]k for the function

f [γ]k : H −→ C;

τ −→ j(γ, τ)−kf(γτ).

Lemma 1.4. Definition 1.3 specifies a right action of SL(2,Z) on the complex-valued functions on
H.
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Proof. We straightforwardly compute : for all f : H→ C, γ ∈ SL(2,Z), τ ∈ H and integer k,

f [γ1γ2]k(τ) = j(γ1γ2, τ)−kf(γ1γ2τ)

= j(γ2, τ)−kj(γ1, γ2τ)−kf(γ1γ2τ)

= j(γ2, τ)−kf [γ1]k(γ2τ)

= f [γ1]k[γ2]k(τ).

Since the identity matrix clearly acts trivially, we are done.
�

Definition 1.5. Let f : H → C be a meromorphic function and k an integer. f is called weakly
modular of weight k if

(1) f [γ]k(τ) = f for all γ ∈ SL(2,Z).

We start with a criterion for weak modularity.

Proposition 1.6. Let f : H→ C be a meromorphic function. Then, f is weakly modular of weight
k if and only if

(2) f(τ + 1) = f(τ) and f(−1/τ) = τkf(τ) for all τ ∈ H.

Proof. Suppose that first that f is weakly modular. Then, applying the relation 1 to the matrices

T =

(
1 1

1

)
and S =

(
−1

1

)
yields the relations (2).

We now suppose that f only satisfies the relations (2). Since the operators [γ]k define a right
action of SL(2,Z) on the complex-valued functions on H, it is enough to show that SL(2,Z) is
generated by T and S. Observe first that

T n =

(
1 n

1

)
.

Let now α =

(
a b
c d

)
be any element of SL(2,Z) and Γ = < S, T >. Up to multiplying by

−Id = S2 ∈ Γ, we may assume that d ≥ 0. We now split cases. If c = 0, the relation det(α) = 1
forces a = d = ±1 and since d ≥ 0, α = T b ∈ Γ. If c 6= 0, the Euclidean division gives d = mc+ n,
0 ≤ n < c. Up to replacing m by m±1 if needed, we may assume that |n| < c

2
. Thus, using(

a b
c d

)(
1 −m

1

)
=

(
a ∗
c d−mc

)
,

we see that we can multiply α by an element of Γ to get a matrix whose bottom row is (c, d′) with
|d′| < c

2
. Now, multiplying by S switches the bottom elements up to a sign so we can induct this

process to get β ∈ Γ such that

αβ =

(
a′ b′

d′

)
.

We can now conclude as in the case c = 0.
�
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Example 1.7. As an exercise, one can apply this process to decompose the following matrix in a
product of powers of T and S : (

3 7
2 5

)
.

Proposition 1.6 enables one to expand a weakly modular function as a Fourier series. The latter
will enables us to define the notion of holomorphy at ∞. More precisely, we have :

Corollary 1.8. Let f : H→ C be holomorphic and weakly modular. Then,

f(τ) =
∑
n∈Z

fne
2πinτ for some fn ∈ C.

Proof. Thanks to the relation (2), f is Z-periodic and holomorphic. Thus the function fy : R →
C; x 7→ f(x+ iy) is C∞ and 1-periodic so we get a Fourier expansion

fy(x) =
∑
n∈Z

an(y)e2πinx, where an(y) =

∫ 1

0

f(t+ iy)e−2πintdt.

When we define

gn : z 7→
∫ 1

0

f(t+ z)e−2πintdt,

we can rewrite an(y) = gn(iy). And, gn is holomorphic : indeed, recall that the well-know implication
“h is holomorphic ⇒ the integral of h on a closed path vanishes” is actually an equivalence thanks
to Morera’s Theorem. Thus, the holomorphy of z 7→ f(t+z)e−2πint and Fubini’s Theorem conclude.
Now, thanks to the periodicity, we compute for all x ∈ R,

gn(x) =

∫ 1

0

f(t+ x)e−2πintdt =

∫ x+1

x

f(t)e−2πin(t−x)dt

= e2πinx

∫ x+1

x

f(t)e−2πintdt = e2πinx

∫ 1

0

f(t)e−2πintdt = e2πinxgn(0).

Thus, thanks to the analytic continuation Theorem, gn(z) = e2πinzgn(0) for every complex z. We
can finally rewrite, when τ = x+ iy,

f(τ) = fy(x) =
∑
n∈Z

an(y)e2πinx =
∑
n∈Z

gn(0)e2πinτ

�

We now give another proof for Corollary 1.8. The reason we dispense this alternative argument
is that it is phrased in terms of differential operators. The latter become compatible with the
frameworks of Lie groups acting on their quotients, which is the setting in which some generalized
notions of modular forms are studied.

Proof. Let D be the differential operator D = ∂
∂x

+i ∂
∂y

. We see complex functions as complex-valued

applications of two real variables here. The Cauchy-Riemann equations give Df = 0. Now, as seen
before, fy : x 7→ f(x+ iy) is periodic so we get a Fourier expansion : for all x+ iy ∈ H,

f(x+ iy) =
∑
n∈Z

an(y)e2πinx, an(y) =

∫ 1

0

f(t+ iy)e−2πintdt.
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Now, the an’s are differentiable thanks to Liebniz’s integral rule :

a′n(y) =

∫ 1

0

∂
∂y
f(t+ iy)e−2πintdt.

Also, for every y ∈ R, fy is C2 so integrating by parts gives a bound |an(y)| ≤ C(y)/n2 where

C(y) =
∫ 1

0
| ∂2

∂x2 fy|. In particular, the |an(y)|’s are uniformly bounded by a C/n2 on every compact
subset of H. Therefore, the Fourier series of f uniformly converges to f on compact sets. Now,
as f is actually infinitely differentiable, we can use the same argument with

∑
n

∂
∂x
an(y)e2πinx and∑

n
∂
∂y
an(y)e2πinx. This shows that we can permute the operators ∂

∂x
and ∂

∂y
with the infinite sum

to get

0 = Df =
∑
n∈Z

∂
∂x
an(y)e2πinx + i ∂

∂y
an(y)e2πinx

=
∑
n∈Z

an(y)2πine2πinx + ia′n(y)e2πinx

=
∑
n∈Z

i[an(y)2πn+ a′n(y)]e2πinx.

Identifying the Fourier coefficients yields for all n :

a′n(y) = −2πinan(y)⇒ an(y) = fne
−2πiny for some constant fn.

We can now conclude as in the previous proof.
�

We can now rigorously state the definition of a modular form on SL(2,Z).

Definition 1.9. A function f : H → C that is holomorphic and weakly modular is said to be
holomorphic at ∞ if its Fourier expansion f(τ) =

∑
n fne

2πinτ satisfies fn = 0 for all n < 0.

Definition 1.10. Let k be an integer. A modular form of weight k is a function f : H→ C that is

(i) holomorphic on H,

(ii) holomorphic at ∞,

(iii) weakly modular of weight k on SL(2,Z).

Definition 1.11. A modular form f whose Fourier expansion f(τ) =
∑

n fne
2πinτ satisfies f0 = 0

is called a cusp form.

Proposition 1.12. We have the elementary properties :

(i) The collection of all the modular forms of weight k for a fixed integer k form a C-vector
space. We denote it Mk(SL(2,Z)).

(ii) The cusp forms of weight k form a sub-vector space ofMk(SL(2,Z)). We denote it Sk(SL(2,Z)).

(iii) The product of a modular form of weight k and one of weight l yields a modular form of
weight k + l. We get a graded ring

M(SL(2,Z)) =
⊕

kMk(SL(2,Z)).

(iv) The cusps forms S(SL(2,Z)) =
⊕

k Sk(SL(2,Z)) form an ideal in M(SL(2,Z)).
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Proof. All of these are easy verifications. To check the point (iv), recall that the multiplication of
two absolutely converging Fourier series

∑
n ane

2πinτ and
∑

n bne
2πinτ is given by

∑
n cne

2πinτ where

cn =
∑
i+j=n

aibj.

�

We have the trivial examples :

Example 1.13. Any constant function f : τ 7→ c is a modular form of weight 0. More generally,
the modular forms of weight 0 are the SL(2,Z)-invariant holomorphic functions.

Example 1.14. Mk(SL(2,Z)) = {0} whenever k is odd. Indeed, −Id lies in SL(2,Z) and acts
trivially on H. Thus, for all τ ∈ H and f ∈ Mk(SL(2,Z)), f(τ) = f(−Idτ) = (−1)kf(τ) = −f(τ)
which implies f = 0.

We conclude this section with a discussion about the holomorphy at ∞ (and why it is named as
it is). Let τ = x+ iy ∈ H. Since y > 0,

e2πiτ = e2πix︸ ︷︷ ︸
∈S1

e−2πy︸ ︷︷ ︸
∈]0,1[

∈ D = {z ∈ C, |z| < 1}.

And, we can reach any point of D′ = D \ {0} via H 3 τ 7→ e2πiτ by writing it as reiθ, r ∈]0, 1[

and choosing the right x = θ
2π

and y = − ln(r)

2π
> 0. Moreover, τ 7→ e2πiτ is Z-periodic and e2πiτ

tends to 0 as Im(τ) tends to ∞. Visually, the map τ 7→ e2πiτ contracts the upper half plane onto
an infinite strip R×]0, 1[ then wraps this strip onto the punctured disc D′. Recall now that the
complex exponential function can be locally holomorphically inverted around any non-zero complex
number. And, any two possible inverses differ by an element of 2πiZ. f being Z-periodic, the map

g : D′ −→ C;

q −→ f
(
ln(q)

2πi

)
is well-defined. It is holomorphic because the logarithm can be expressed holomorphically around
each point of the punctured disc. We also have by construction f(τ) = g(e2πiτ ). Considering the
Laurent expansion of g at 0 yields

g(q) =
∑
n∈Z

gnq
n.

Evaluating at q = e2πiτ gives∑
n∈Z

gne
2πinτ =

∑
n∈Z

gn(e2πiτ )n = g(e2πiτ ) = f(τ),

so the gn’s are the Fourier coefficients of f . We can now explain the terminology “holomorphic at
∞” : demanding gn = 0 for every negative n is equivalent to requiring that g can be holomorphically
continued at 0. These considerations enable us to get a new criterion :

Corollary 1.15. Let f : H→ C be holomorphic and weakly modular. Then,

f is holomorphic at ∞⇔ lim
Im(τ)→∞

f(τ) exists

⇔ f(τ) is bounded as Im(τ)→∞.

Moreover, in that case,
f is a cusp form ⇔ lim

Im(τ)→∞
f(τ) = 0.
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Proof. If f is a modular form, since Im(τ)→∞⇔ e2πiτ → 0,

lim
Im(τ)→∞

f(τ) = lim
Im(τ)→∞

g(e2πiτ ) = lim
z→0

g(z) = g0.

Thus, the limit exists and it is the first Fourier coefficient of f . This gives the characterization of
cusp forms. If we suppose that the limit exists, f(τ) is of course bounded as Im(τ) tends to infinity.
Finally, if one supposes that f(τ) is bounded as Im(τ) tends to infinity, then g(q) is bounded as q
tends to 0 which can only happen if the negative coefficients in

∑
n gnq

n vanish.
�
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2. First Examples of Modular Forms and Cusp Forms

We introduce in this second part an important non-trivial example of modular forms : the
Eisenstein series.

Definition 2.1. We define the Eisenstein series of weight k for every even integer k > 2 as the
series

Gk(τ) :=
∑

(n,m)∈L

1

(nτ +m)k
, for all τ ∈ H, L := Z2 \ {(0, 0)}.

This is the first example of non-trivial modular form of weight k 6= 0. In order to prove this, we
start by checking that this is an actual holomorphic function on H. We define the following subsets
of H : for any two strictly positive real numbers α and β, we set

Ωα
β := {z = x+ iy ∈ Z, x 6 α, y > β}.

Lemma 2.2. For all α and β as above, k > 2 an even integer, Gk converges absolutely and uniformly
on Ωα

β .

Proof. We use the Weierstrass M -test to get the absolute and uniform convergence. Recall its
statement :

Theorem 2.3 (Weierstrass M -test). Let {fn} be a sequence of complex functions defined on a set
Ω. Suppose that for all n ∈ N, there is a constant cn such that |fn(x)| 6 cn on all Ω. If the sum
∞∑
n=1

cn converges, then the sum
∞∑
n=1

fn(x) converges absolutely and uniformly on Ω.

To apply the Theorem, we first prove the existence of a r > 0 satisfying

|nτ +m| > rmax{|n|, |m|} for all τ ∈ Ωα
β and (n,m) ∈ L.

We claim that there is a constant 1 > r′ > 0 such that for all δ ∈ R and all τ = x + iy ∈ H,
|τ + δ| > r′max{1, |δ|}. Indeed, if |δ| < 1,

|τ + δ|2 = (x+ δ)2 + y2 > y2 > β2 = β2max{1, |δ|}2.

Now, if 1 6 |δ| 6 3α and y = im(τ) > α

|τ + δ|2 = (x+ δ)2 + y2 > y2 > α2 > (
1

3
δ)2 = (

1

3
max{1, |δ|})2.

If y = Im(τ) 6 α, we must have α 6 β. Thus we have that the point (δ, τ) is in the compact set
A := [1, 3α]×{z ∈ Ωα

β |β 6 Im(z) 6 α}. Since this set is compact, and that the continuous function

(δ, z) 7→ |δ+z|
|δ| is well-defined on A, this mapping admits a minimum M ∈ A. Therefore

|(δ, τ)| >M |δ| = Mmax{1, |δ|}.

The last case is |δ| > 3α and |δ| > 1, but then

|τ + δ| > |δ| − α.

Thus, since |δ| > 3α, we have |δ|−α > 2
3
|δ| = 2

3
max{1, |δ|}. Therefore choosing r′ = min

{
1
3
,M, β

}
yields the desired result. We can now deduce our first claim. Let (m,n) ∈ L, assume first that
n 6= 0, then,

|nτ +m| =
∣∣∣τ +

m

n

∣∣∣ |n| > r′max{1,
∣∣∣m
n

∣∣∣} |m| = r′max{|m|, |n|}.
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And if n = 0 then, clearly |m| > max{|m|, |n|} > r′max{|m|, |n|}. Thus r = r′ is adequate. We get
the bound, for all τ ∈ Ωα

β ,

∑
(n,m)∈L

∣∣∣∣ 1

(nτ +m)k

∣∣∣∣ 6 ∑
(n,m)∈L

1

rkmax{|m|, |n|}k
.

Now, we can deduce the absolute convergence of Gk as follows. First note that

∑
(n,m)∈L

1

rkmax{|m|, |n|}k
=
∞∑
j=1

s(j)

rkjk
,

where s(j) := |{(n,m) ∈ L | max{|m|, |n|} = j}|. But one easily checks that s(j) = 8j so the last
sum becomes

∑
j 8r−kj−(k+1), which converges as k > 2. Finally, the Weierstrass M -test gives the

absolute and uniform convergence of Gk on every Ωα
β .

�

Since each compact subset of H is contained in a Ωα
β , the series converges absolutely and uniformly

on all compact subsets of H. Thus, Morera’s Theorem gives the holomorphy of Gk on H. Moreover,
the absolute convergence allows us to permute the terms of Gk and prove the modularity of the
Eisenstein series.

Theorem 2.4. Gk is a modular form of weight k for al k > 2 even.

Proof. Indeed, for all τ ∈ H,

Gk(τ + 1) =
∑

(n,m)∈L

1

(nτ +m+ n)k
.

But we can see that this is exactly Gk(τ) since (n,m + n) runs over all L when (n,m) does. We
now compute Gk(−1/τ) :

Gk(−1/τ) =
∑

(n,m)∈L

1

(−n 1
τ

+m)k
=

∑
(n,m)∈L

τk

(τ(−n 1
τ

+m))k

= τk
∑

(n,m)∈L

1

(−n+mτ)k
= τkGk(τ).

Similarly, (m,−n) runs over L when (n,m) does.

We now check that Gk is holomorphic at infinity. If τ ∈ Ωα
β , τ still lies in Ωα

β as Im(τ) tends to
infinity. Therefore, we can permute the limits to get

lim
Im(τ)→∞

Gk(τ) = lim
Im(τ)→∞

∑
(n,m)∈L
n 6=0

1

(nτ +m)k
+ 2ζ(k)

=
∑

(n,m)∈L
n 6=0

lim
Im(τ)→∞

1

(nτ +m)k
+ 2ζ(k) = 2ζ(k).

Thus Gk is holomorphic at infinity. We proved that Gk is a modular form of weight k for any even
k > 2. �

We now compute the Fourier coefficients of Gk. We will need the following formula.
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Lemma 2.5 (Lipschitz’s formula). Let k > 2 and τ ∈ H. Then

∑
n∈Z

1

(τ + n)k
=

(−2πi)k

(k − 1)!

∞∑
n=1

nk−1e2πinτ .

Proof. The cotangent can be expanded as the series

πcot(πτ) =
1

z
+
∞∑
n=1

(
1

τ − n
+

1

τ + n

)
.

Moreover, we have the following identities:

cot(τπ) =
cos(τπ)

sin(τπ)
= i

eπiτ + e−πiτ

eπiτ − e−πiτ
= i

q + 1

q − 1
= −i1 + q

1− q
= −i(1 + q)

∞∑
n=0

qn = −i(1 + 2
∞∑
n=1

qn),

where q = e2πiτ . Therefore,

1

z
+
∞∑
n=1

(
1

τ − n
+

1

τ + n

)
= −2πi

(
1

2
+
∞∑
n=1

qn
)
.

By differentiating k − 1 times this equation, we get :

(−1)k−1 (k − 1)!

τk
+
∞∑
n=1

(
(−1)k−1(k − 1)!

(τ − n)k
+

(−1)k−1(k − 1)!

(τ + n)k

)
=(−1)k−1 (k − 1)!

τk
+

∑
n∈Z\{0}

(
(−1)k−1(k − 1)!

(τ + n)k

)

=
∑
n∈Z

(
(−1)k−1(k − 1)!

(τ + n)k

)

=− 2πi
∞∑
n=1

(2πin)k−1qn

=− (2πi)k
∞∑
n=1

nk−1qn.

Divide both sides by (−1)k−1(k − 1)! yields the desired

∑
n∈Z

1

(τ + n)k
=

−(2πi)k

(−1)k−1(k − 1)!

∞∑
n=1

nk−1qn =
(−2πi)k

(k − 1)!

∞∑
n=1

nk−1qn.

�

We can now deduce the Fourier expansion of Gk. Let τ ∈ H.

Gk(τ) =
∑

(n,m)∈L

1

(nτ +m)k
= 2ζ(k) +

∑
(n,m)∈Z2

n 6=0

1

(nτ +m)k

= 2ζ(k) +
∞∑
n=1

∑
m∈Z

1

(nτ +m)k
+ (−1)k

∞∑
n=1

∑
m∈Z

1

(nτ +m)k

= 2ζ(k) + 2
∞∑
n=1

∑
m∈Z

1

(nτ +m)k
(3)
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Now applying the Lipschitz’s formula to
∑
m∈Z

1
(nτ+m)k

for each n yields

Gk(τ) = 2ζ(k) + 2
∞∑
n=1

(−2πi)k

(k − 1)!

∞∑
m=1

mk−1e2πimnτ

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

∞∑
m=1

mk−1e2πimnτ

= 2ζ(k) + 2
(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e2πinτ , where σk(n) =
∑
m|n
m>0

mk.

We use this to define an analogue to the Eisenstein series but for weight k = 2.

Definition 2.6. We define the Eisenstein series of weight 2 as the sum

G2(τ) := 2ζ(2) + 2
∞∑
n=1

∑
m∈Z

1

(nτ +m)2
(4)

We can not use the proof of the convergence of Gk to prove that G2 converges. In fact this series
is not absolutely convergent, therefore one can not change the order of summation. However, the
Lipschitz’s formula holds for k = 2. Since the sum of G2 is already of the form of (3), we still have
an expansion

G2(τ) = 2ζ(2)− 8π2
∞∑
n=1

σ1(n)e2πinτ .

The sum in this expression converges to a holomorphic function. Since we cannot permute the
terms of the sum in (4), we can not prove the modularity of G2 as we did for the other Eisenstein
series. Actually, G2 is not modular and we have the following result :

Lemma 2.7. Let γ =

(
a b
c d

)
∈ SL(2,Z), and τ ∈ H. Then,

G2(γτ) = j(γ, τ)2G2(τ) + πicj(γ, τ).

Definition 2.8. We define the normalized Eisenstein series as Ek :=
1

2ζ(k)
Gk.

We now use the Einsenstein series and the stability under sums and products of modular forms
to define our first cusp form.

Definition 2.9. We define the discrimimant function ∆ as

∆ : H −→ C

τ 7−→ 1

1728
(E3

4 − E2
6).

The discriminant function is a modular form of weight k = 12 thank to Proposition 1.12. Moreover,
it is a cusp form because, using Corollary 1.15,

lim
Im(τ)→∞

Ek(τ) = 1⇒ lim
Im(τ)→∞

∆(τ) = 0.

We now prove that ∆ is a non-trivial cusp form by computing its first Fourier coefficient. Using the
usual product rule for a Fourier series

∑
n anq

n, we can identify the first coefficients of (
∑

n anq
n)

2
as



MODULAR FORMS : DEFINITIONS AND EXAMPLES 11

2a0a1 and the first one of (
∑

n anq
n)

2
as 3a2

0a1. Therefore, the first coefficient of E2
6 is 2 1

ζ(6)

(2πi)6

(5)!
σ5(1)

For E3
4 , it is 3 1

ζ(4)

(2πi)4

(3)!
σ3(1). Note also that σk(1) = 1 for all k so the first coefficient b1 of ∆ satisfies

1728b1 = 2
1

ζ(6)

(2πi)6

5!
− 3

1

ζ(4)

(2πi)4

3!

= 2
945

π6

(2πi)6

120
− 3

90

π4

(2πi)4

6
= −1728.

Therefore b1 = −1 and thus ∆ is a non-trivial cusp form. It will be useful to express ∆ as follows.

Lemma 2.10. The discriminant function can be expressed as the product

∆(τ) = q
∞∏
n=1

(1− qn)24, where q = e2πiτ .

We can see that this implies in particular that for all τ ∈ H, ∆(τ) 6= 0. This definition enables us
to compute the derivative of ∆.

Lemma 2.11. The discriminant function and E2 satisfy the relation

∆′ = 2πi∆E2.

Proof. Since ∆(τ) 6= 0, we can define a invert to the complex exponential around ∆(τ). The inverse
we obtain, ln, is only well-defined up to an element of 2πiZ. In particular, any two inverses differ
by a constant, so the derivative of ln ◦∆ is well-defined. We compute :

(ln ◦∆)′(τ) =
d

dτ

(
ln

(
q
∞∏
n=1

(1− qn)24

))

=2πi+
∞∑
n=1

24
d

dτ
ln(1− qn)

=2πi−
∞∑
n=1

48πin
qn

1− qn

=2πi− 48πi
∞∑
n=1

nqn
∞∑
m=0

qnm

=2πi− 48πi
∞∑
n=1

∞∑
m=1

nqnm

=2πi

(
1− 8π2

2ζ(2)

∞∑
n=1

σ1(n)e2πinτ

)
= 2πiE2.

Since (ln ◦∆)′ = ∆′

∆
we can conclude.

�

To conclude, we produced a non-trivial modular form Gk of weight k for every even positive
integer k 6= 2. We also previously proved that odd weights do not admit non-trivial modular forms.
Finally, we constructed a non-trivial cusp form of weight 12, which turns out to be the non-trivial
cusp form of lowest weight.
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