
The Valence Formula and Its Applications

Carl Felix Waller and Ningjie Tan

March 29, 2019

1 The Space of Modular Forms

Let f be a meromorphic non-zero function on the upper half plane H := {z ∈ C : Im(z) > 0}
and let p ∈ H. We denote by vp(f) the order of f at p, so vp(f) is the integer n such that
f(z)

(z−p)n is holomorphic and non-zero at p. Observe that for f a weakly modular function of

weight 2k, 1 we have vp(f) = vγp(f) for all p ∈ H and γ ∈ Γ̄ := SL2(Z)/{±I}. Indeed, since

f(γ.z) = (cz + d)2kf(z)

we see that the term (cz + d)2k will never cancel a pole or a zero since z ∈ H and c, d ∈ R.
Thus vp(f) only depends on the image of p ∈ H in H/Γ̄. We will, by slight abuse of notation,
write p for the element in the quotient, hoping that it will always be clear from the context
what is meant. Recall that for f a 1-periodic meromorphic function on H we can define a
function g on D× via g(q) = f( log(q)

2πi ). This functions is meromorphic on the punctured disk
2, recall the definition.

Definition 1.1. A 1-periodic meromorphic function f on H is calledmeromorphic at infinity
if g is meromorphic at zero.

Indeed, one can easily verify that this definition is equivalent to the definition we had in the
second talk. Then for f a modular function simply set v∞(f) := v0(g).

Claim 1.2. Let f be a modular function then f has finitely many poles and zeros in H/Γ̄

Proof. Since f is meromorphic at ∞ there exists an 1 > R > 0 such that

g(q) =
∞∑

n=v∞(f)

anq
n

converges for 0 < |q| < R. Moreover let us assume that g has no zeros for 0 < |q| < R,
which we can do since the zeros of a holomorphic function are always isolated. Now recall
that f(z) = g(e2πiz) and the preimage of q ∈ D× under the map H→ D×, z 7→ e2πiz is

z(q) = − i

2π
log(q) = − i

2π
log |q|+ arg(q)

2π
, (1)

1We saw last time that there are non-zero weakly modular function with odd weight, that is why we will
use the 2k notation in our talk.

2Indeed, since log is holomorphic in a neighbourhood of any point in D× this follows from the fact that the
composition f1 ◦ f2 of a meromorphic function f1 and a holomorphic and non-constant function f2 is always
meromorphic.
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where arg and the first log denote the usual multivalued functions. Thus g having no poles
and zeros inside 0 < |q| < R is equivalent to f having no poles and zeros for ∞ > Im(z) >

− log(R)
2π . Thus f has no poles and zeros for Im(z) > − log(R)

2π and since the intersection of the

fundamental domain F := {z ∈ C : −1
2 ≤ Re(z) ≤ 1

2 , |z| ≥ 1} with {Im(z) ≤ − log(R)
2π } is

compact and contains all zeros and poles of f the claim follows.

Finally, let us denote by ep the order of the stabilizer of p ∈ H under the action of Γ̄ on H,
that is ep = 2 if p is congruent modulo Γ̄ to i, ep = 3 if p is congruent modulo Γ̄ to ρ := eπi/3

and else ep = 1 (see Corollary 1 from the first talk). Let us denote the quotient of the action
of Γ̄ on H by H/Γ̄. Now we can prove the valence formula.

Theorem 1.3. Let f be a modular function of weight 2k not identically zero then

v∞(f) +
∑

p∈H/G

1

ep
vp(f) =

k

6
(2)

or equivalently

v∞(f) +
1

3
vρ(f) +

1

2
vi(f) +

∑∗

p∈H/Γ̄

vp(f) =
k

6
, (3)

where the stared sum means that we are not summing over i and ρ.

Proof. We will use the logarithmic integral around some contour to conclude the result. First,
let us assume that f has no poles or zeros on ∂F except for maybe at ρ, i or ρ2 = Sρ, integrate
around the contour C in Figure 1 and let the radius ε > 0 of arcs around i, ρ, ρ2 go to zero.
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b) The integral of _1- tJ[ on the circle which contains the arc BB', oriented 
2i1T f 

negatively, has the value - vp(J). When the radius of this circle tends to 0, 
/".... 21T 

the angle BpB' tends to - . Hence: 
6 

B' 

- - - - -v (f). I fd! I 
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Similarly when the radii of the arcs CC' and DD' tend to 0: 

C' 

- - - - - v/(f) I fd! I 
2i1T! 2 

C 

D' 

_1 It}[ - - v (f). 
2ifT! 6 p 
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c) T transforms the arc AB into the arc ED'; since f(Tz) = fez), we get: 

B E _I fd! + ._1 fd! = o. 
2i1T ! 2i1T f 

A D' 

d) S transforms the arc B'C onto the arc DC'; since !(Sz) = Zl,,/(Z). we 
get: 

df(Sz) = 2k + df(z) , 
f(Sz) z fez) 

Figure 1: Contour C taken from [1]
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On the one hand
1

2πi

∫
C

df

f

ε→0→
∑∗

p∈H/Γ̄

1

ep
vp(f) (4)

Conversely let us evaluate each line segment separately, the arc from B′ to C we evaluate
using a change of variable z 7→ S(z) = −1

z∫ C

B′

f ′(z)

f(z)
dz =

∫ C′

D

f ′(Sz)

f(Sz)
S′(z)dz

=

∫ C′

D

[2k

z
+
f ′(z)

f(z)

]
dz,

where we used that

f ′(Sz)S′(z) = (f ◦ S)′(z) =
d

dz
f(Sz) =

d

dz
z2kf(z) = 2kz2k−1f(z) + z2kf ′(z).

The second term cancels with the other arc from C ′ to D and the remaining integral we can
explicitly evaluate by choosing the path γ(t) = eit that is

1

2πi

∫ C

B′

f ′(z)

f(z)
dz +

1

2πi

∫ D

C′

f ′(z)

f(z)
dz =

1

2πi

∫ C′

D

2k

z
dz

ε→0→ 1

2πi

∫ π/2

π/3

2k

eit
ieitdt =

k

πi

[π
2
− π

3

]
=
k

6
. (5)

The integrals around i, ρ, ρ2 are easily computed

1

2πi

∫ B′

B

df

f

ε→0→ −1

6
vρ(f) (6)

1

2πi

∫ D′

D

df

f

ε→0→ −1

6
vρ(f) (7)

1

2πi

∫ C′

C

df

f

ε→0→ −1

2
vi(f). (8)

Now we will show that 1
2πi

∫ A
E

df
f = −v∞(f). It requires a little more thought3 than the

previous ones. Again using the fact that poles and zeros are isolated we can find an open
horizontal strip U ⊂ H about the line from E to A, which contains all z ∈ H with imaginary
part large enough. Set h = f ′/f this is again 1-periodic and holomorphic on the strip U . Last
time we proved that a holomorphic 1-periodic map on H can always be written in a Fourier
series. Looking at the proof it is easy to see that the same will hold for a 1-periodic function
that is only holomorphic on a horizontal strip. Hence, we can write

f(z) =

∞∑
n=v∞(f)

fne
2πinz, h(z) =

∑
n∈Z

hne
2πinz, ∀z ∈ U.

3It is also possible to evaluate this integral by changing variable z 7→ e2πiz, however then there is a subtlety
with the inverse not being continuous, which needs to be dealt with.
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Since the series is absolutely convergent we can interchange the sum with the integral and
get that ∫ A

E

f ′(z)

f(z)
dz =

∑
n∈Z

∫ A

E
hne

2πinzdz =
∑
n∈Z

∫ −1/2

1/2
hnRe

2πintdt = h0

where we simply parameterize the line integral as z(t) = t − i logR
2π . Conversely observe that

f ′ also has a Fourier expansion with coefficients f ′n = 2πinfn. Also we have

lim
Im(z)→∞

h(z) = lim
Im(z)→∞

∑∞
n=v∞(f) f

′
ne

2πinz∑∞
n=v∞(f) fne

2πinz
=
f ′v∞(f)

fv∞(f)
= 2πiv∞(f)

which is finite. Thus by Corollary 1.15 from the second talk, h is holomorphic at infinity and
moreover h0 = 2πiv∞(f), we conclude that

1

2πi

∫ A

E

f ′(z)

f(z)
dz = −v∞(f). (9)

Lastly integrating along the left hand vertical line we perform a change of variable z 7→ z+1 =
T (z) ∫ B

A

f ′(z)

f(z)
dz =

∫ D′

E

f ′(z + 1)

f(z + 1)
T ′(z)dz

=

∫ D′

E

f ′(z)

f(z)
dz = −

∫ E

D′

f ′(z)

f(z)
dz

thus the two vertical lines cancel each other.
Combining equations (4)-(9) gives the desired formula. Recall that we still need to show the
theorem for the general case, where we allow zeros and poles to be anywhere on the boundary
∂F . So let λ ∈ ∂F \ {i, ρ, ρ2} be a pole or zero of f , observe that there then will also be
a second zero or pole λ′ ∈ Γ̄λ in the orbit of λ. It doesn’t really matter how we integrate
around λ and λ′ but for convenience we choose paths such that equation (4) still holds, that
is only one point of the two is inside the contour. If λ and λ′ are on the vertical lines, then
the two arcs around λ and λ′ cancel just as before. For λ on the unit circle the two terms
will also cancel, indeed performing the same change of variable z 7→ Sz∫

λ

df

f
= −

∫
λ′

[2k

z
+
f ′(z)

f(z)

]
dz

where
∫
λ denotes the positively oriented arc around λ as in Figure 2. The first term goes to

zero as we let the radius of the half circle go to zero, the second term cancels the arc around
λ′.
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Figure 2: Modified contour for extremal point on the unit disk

Clearly we can apply the same argument for multiple poles or zeros on the boundary (recall
that there can only be finitely many). This completes the proof.

We now discuss the space of modular forms. For k ∈ Z denote M2k, S2k the C-vector space
of modular forms, respectively cusp forms of weight 2k. For k ≥ 2 denote G2k ∈ M2k the
Eisenstein series of weight 2k, which were defined in the second talk. We can think of S2k as
the kernel of the map

M2k → C
f 7→ f(∞).

This is a linear map between complex vector spaces, by linear algebra dim(M2k)−dim(S2k) =
dim(M2k/S2k) ≤ dimC = 1. Moreover recall that for k ≥ 2 we have G2k(∞) = 2ζ(2k) 6= 0,
by the proof of Theorem 2.4 from the last talk. Thus we can write

M2k = S2k ⊕ C•G2k, ∀k ≥ 2 (10)

where C•G2k denotes the one-dimensional C-vector space with basis G2k. Also recall the
definition of the discriminant function ∆ := 1

1728(E3
4 − E2

6) ∈ S12, where E2k := 1
2ζ(2k)G2k

denotes the normalized Eisenstein series of weight 2k. We proved that ∆ is a non-trivial
element of S12. Using formula (3) we can prove some results concering the spaces M2k.

Theorem 1.4. i) We have M2k = 0 for k < 0 and k = 1

ii) Multiplication by ∆ defines an isomorphism from M2k−12 to S2k

iii) For k = 0, 2, 3, 4, 5 M2k is one-dimensional with basis 1, G4, G6, G8, G10, so also S2k = 0

Proof. Let k < 0 or k = 1 and let f ∈M2k. By contradiction assume that f is non-zero, then
the we know that Theorem 1.3 holds. That is

v∞(f) +
∑∗

p∈H/Γ̄

vp(f) +
1

2
vi(f) +

1

3
vρ(f) =

k

6
. (11)

Since f is holomorphic the left hand side of this equation actually is ≥ 0. Thus we already
see that we get a contradiction for k < 0. For k = 1 observe that this equation can also never
hold. For the simple reason that there do not exist non-negative integers (n, n′, n′′) such that

n+
n′

2
+
n′′

3
=

1

6
. (12)
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This proves i). Now we prove ii). Since ∆ is a cusp form it has a zero at infinity, that is
v∞(∆) ≥ 1. For f = ∆ formula (11) holds. Since the right hand side is equal to 1 we get
that actually v∞(∆) = 1 and vp(∆) = 0 for all p ∈ H. That is ∆ has a simple zero at infinity
and is non-zero on H. Now we are ready to define for arbitrary k the linear map

S2k →M2k−12

f 7→ f

∆
.

We need to check that this is well defined, i.e. f
∆ ∈ M2k−12. First, observe that f

∆ is clearly

weakly modular of weight 2k − 12. Second, f
∆ has no poles in H since we just proved that ∆

is non-zero on H. Finally, v∞( f∆) = v∞(f)− v∞(∆) = v∞(f)− 1 ≥ 0, since f is a cusp from.
This proves ii) since the map M2k−12 → S2k given by g 7→ ∆ · g is clearly well defined, linear
and an inverse.
Now let 0 ≤ k ≤ 5, then 2k − 12 < 0 and thus by i) M2k−12 = 0. By ii) S2k = 0 and thus
dimM2k ≤ 1. For k = 0, 2, 3, 4, 5 we know that 1, G4, G6, G8, G10 are non-zero elements in
M2k which shows iii) and completes the proof.

Corollary 1.5. We have for k ≥ 0

dimM2k =

{⌊
k
6

⌋
if k ≡ 1 mod 6⌊

k
6

⌋
+ 1 else

where b c denotes the floor function, i.e. for x ∈ R, bxc := max{n ∈ Z : n ≤ x}.

Proof. This holds for 0 ≤ k ≤ 5 by part ii) of Theorem 1.4 and combining equation (10) with
part iii) of Theorem 1.4 yields the result for all larger k by induction.

A more concrete application of Theorem 1.4 is the following observation about the normalized
Eisenstein series.

Claim 1.6. E2
4 = E8, E4E6 = E10 and E6E8 = E14

Proof. Clearly E2
4 ∈ M8 and since E2k are normalized at infinity E2

4 − E8 ∈ S8. However
from Theorem 1.4 we know that S8 = 0, hence we get the first equality. The same argument
works for the other two since S10 = S14 = 0.

Note that the argument in the proof only goes through for these 3 cases. Generally EkEl 6=
Ek+l since we can have non-zero cusp forms. One can use Claim 1.6 to derive relations
between the Fourier coefficients of the Eisenstein series. Recall that for q := e2πiz we had

E4(z) = 1 + 240

∞∑
n

σ3(n)qn, E6(z) = 1− 504

∞∑
n

σ5(n)qn

E8(z) = 1 + 480
∞∑
n

σ7(n)qn, E10(z) = 1− 264
∞∑
n

σ9(n)qn

E14(z) = 1− 24

∞∑
n

σ13(n)qn,
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where
σk(n) :=

∑
m|n
m>0

mk.

By Claim 1.6 we have E8 = E2
4 , thus

480

∞∑
n=1

σ7(n)qn = 2 · 240

∞∑
n=1

σ3(n)qn + (240)2
∞∑
n=1

∞∑
m=1

σ3(n)σ3(m)qn+m

⇔
∞∑
n=1

σ7(n)qn =

∞∑
n=1

σ3(n)qn + 120

∞∑
n=1

n−1∑
i=1

σ3(i)σ3(n− i)qn.

Comparing coefficients we get for all n ≥ 1

σ7(n) = σ3(n) + 120

n−1∑
i=1

σ3(i)σ3(n− i).

Doing the exact same thing for the other equations in Claim 1.6 we get

11σ9(n) = −10σ3(n) + 21σ5(n) + 5040

n−1∑
i=1

σ3(i)σ5(n− i)

σ13(n) = 21σ5(n) + 20σ7(n) + 10080
n−1∑
i=1

σ5(i)σ7(n− i).

This is a result in number theory which we have derived via complex analysis.
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2 Structure of the Graded Ring Generated by Modular Forms

From now on, we will identify H/Γ̄ and {z ∈ C : |z| > 1,−1/2 < Re(z) < 1/2}∪{−1/2 +ai ∈
C : a ≥

√
3/2} ∪ {eiθ ∈ C : π/2 ≤ θ ≤ 2π/3}.

Theorem 2.1. For any k, M2k can be generated by all monomials Gα2G
β
3 , α, β integers ≥ 0

and 4α+ 6β = 2k.

Proof. We claim that for a fixed pair of α, β, s.t. α, β ≥ 0, 4α+ 6β = 2k ≥ 12,

M2k = S2k ⊕ CGα4G
β
6 .

This is beacuse the right part of the above equation is a subspace of the left part and they
have the same dimension as C-vector spaces.
So we just need to show that S2k can be generated by these monomials. Then we have
S2k = ∆M2k−12. Since ∆ ∈ CG3

4 ⊕CG2
6, we just need to show that M2k−12 can be generated

by all monomials Gα4G
β
6 with α, β integers ≥ 0 and 4α+ 6β = 2k − 12.

If we show that M2k has this property, ∀k < 6, we will be done by induction.
For k < 0 and k = 1, M2k = {0} and there is no nonnegative solution for 4α+ 6β = 2k.
For k = 0, 4, 6, 8, 10

M0 = C 4α+ 6β = 0, α, β ≥ 0 =⇒ (α, β) = (0, 0)

M4 = CG4 4α+ 6β = 4, α, β ≥ 0 =⇒ (α, β) = (1, 0)

M6 = CG6 4α+ 6β = 6, α, β ≥ 0 =⇒ (α, β) = (0, 1)

M8 = CG2
4 4α+ 6β = 8, α, β ≥ 0 =⇒ (α, β) = (2, 0)

M10 = CG4G6 4α+ 6β = 10, α, β ≥ 0 =⇒ (α, β) = (1, 1)

Theorem 2.2. ∀k ≥ 0, all the monomials Gα4G
β
6 s.t. α, β ≥ 0 4α+ 6β = 2k are linearly

independent in M2k.

Proof. Set

f =
∑

4α+6β=2k,α,β≥0

aα,βG
α
4G

β
6 , aα,β ∈ C.

If f = 0, we need to prove aα,β = 0.
Since G4(ρ) = 0, we have

f(ρ) =
∑

6β=2k

a0,βG
β
6 (ρ) = 0.

Since G6(ρ) 6= 0, a0,β = 0.
Moreover, since G6(i) = 0

f(i) =
∑

4α=2k

aα,0G
α
4 (i) = 0,

and since G4(i) 6= 0, aα,0 = 0.
So

f =
∑

4α+6β=2k, α,β>0

aα,βG
α
4G

β
6 .
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So,

f/G4G6 =
∑

4α+6β=2k−10, α,β≥0

aα,βG
α
4G

β
6 = 0.

So to prove the linear independece in M2k, we only need to show it in M2k−10. And the linear
independence is obvious for M2k when k = 0, 1, 2, 3, 4, because they are {0} or 1-dimensional
vector spaces.

Theorem 2.3. Modular forms of different weights are linearly independent.

Proof. If we can prove

k∑
i=1

fi(z) = 0 ∀z =⇒ fi(z) = 0 ∀z i = 1, 2...k,

where fi is an arbitriry weight 2(i-1) modular form, then we’re done. Let F (z) =
∑k

i=1 fi(z) =
0 ∀z.
For an arbitrary fixed z ∈ H, we find a gi =

[
ai bi
ci di

]
∈ Γ = SL2(Z) ∀i = 1, 2...k, such that

all ciz + di are distinct. For example, one may put gi =

[
1 i
1 i+ 1

]
. Then

F (gi.z) =
k∑
j=1

(ciz + di)
j−1fj(z) = 0 i = 1, 2...k

Set a Vandermonde matrix A = ((ciz + di)
j−1)ij , whose determinant

∏
1<i<j<k(cjz + dj −

ciz − di) is not zero beacuse of the distinct ciz + di. Set a column vector f = (fi(z))i. Then

Af = (F (gi.z))i = (0)i,

since det(A) 6= 0, f = (fi(z))i = (0)i.
Since z is arbitrary, fi(z) = 0 ∀z, ∀i.

Theorem 2.4. G4 and G6 are algebraically independent.

Proof. A polynominal F of G4 and G6 is a finite summation of monominals Gα4G
β
6 . Since the

summation of monominals of the same weight 2k is a weight 2k modular form. Then we can
write

F =
∑
k∈P

f2k,

where P is a finite set of N, f2k is a weight 2k modular form generated by monominals of
the same weight 2k. If F = 0, by Theorem 2.3, f2k = 0 ∀k ∈ P . By Theorem 2.2, such
monominals are linearly independent, so ∀k ∈ P , fk is a zero polynominal of G4 and G6.
Thus F is a zero polynominal.

Corollary 2.5. Define a map T : C[X,Y ] −→ ⊕kM2k, which is generated by X 7→ G4 and
Y 7→ G6. T is an isomorphism.

Proof. T is injective because of Theorem 2.4. T is surjective beacuse of Theorem 2.1.
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3 Structure of the Field of Weight 0 Modular Functions

Now we will consider the weight 0 modular functions, recall that a modular function is
meromorphic on H/Γ̄ ∪ {∞}. As we implied in the title, the set of all wight 0 modular
functions is closed under addition and multiplication and the inversion on both aspects, so it
is a field.

Definition 3.1. We put
j = 1728× 602G3

4/∆,

which is called the modular invariant. We use the coefficient 1728 × 602 to make its residue
1 at ∞.

Properties 3.2. i) j is a weight 0 modular function.

ii) j only has a simple pole at ∞ and is holomorphic on H.

iii) j is a bijection from H/Γ̄ to C.

Proof. i) Because G3
4 and ∆ are both modular forms of weight 12.

ii) j = 1728× 602G3
4/∆ has a simple pole at ∞ because ∆ has a simple zero at ∞.

iii) Since
1728× 602G3

4 − λ∆ = 0⇐⇒ 1728× 602G3
4/∆ = λ,

we will prove that ∀λ ∈ C, f(z) = 1728 × 602G3
4 − λ∆ has a unique zero in H/Γ̄. Consider

the valence formula for the weight 12 modular form f . Obviously, it’s a modular form so it
has no poles. Also, it is not 0 at ∞, since ∆ vanishes at ∞ but G4 not. We set

n = v∞(f) +
∑∗

p∈H/G

vp(f)

n′ = vi(f)

n′′ = vρ(f)

The only nonnegative integer solutions of n+n′/2+n′′/3 = 1 are (1, 0, 0), (0, 2, 0) and (0, 0, 3),
which all imply that it has a unique zero in H/Γ̄ ∪ {∞}. And since f is not 0 at ∞, it has a
unique zero in H/Γ̄.

Theorem 3.3. Let f be a meromorphic function on H. The following properties are equiva-
lent:

i) f is a modular function of weight 0.

ii) f is a quotient of two modular forms of the same weight.

iii) f is a rational function of j.

Proof. ii) =⇒ i) is trivial, we will prove i) =⇒ iii) and iii) =⇒ ii).
i) =⇒ iii) Since j is holomorphic in H/Γ̄ we can mutiply any weight 0 modular function f
by several times of weight 0 modular function j − j(z0) to kill the poles of f in z0, since f
has only finitely many poles by Claim 1.1.
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So we can assume f has no poles in H/Γ̄. However, f is a weight 0 modular function, so it is a
constant or it only has a pole in ∞. Let g = ∆nf , for some nonnegative integer n. Then g is
a modular form weight 12n, which can be generated by Gα4G

β
6 s.t. 4α+6β = 12n, α, β ≥ 0.

Without loss of generality, we assume g = Gα4G
β
6 , and 4α+ 6β = 12n, so 3|α and 2|β, so

f =
g

∆n
=

(
G3

4

∆

)α/3(
G2

6

∆

)β/2
,

which is a rational function of j, since

G3
4

∆
=

j

1728× 602

and
G2

6

∆
=

60

1728× 27× 1402
j − 1

27× 1402
.

iii) =⇒ ii) Let F (j) = f1(j)/f2(j) be a rational function of j, and f1 and f2 polynomials of
j. f1 and f2 are obvious modular functions only having poles at ∞. So f1∆n and f2∆n are
modular forms of weight 12n for big enough n. Then

F = f1∆n/f2∆n.

Since j is a bijection, we have a bijection j∗ : f 7→ f ◦ j from the field of rational functions
C(x) to the field of weight 0 modular functions induced by j, which is well defined because
f ◦ j is a rational function of j and by Theorem 3.3 is a modular function of weight 0. The
inverse of j∗, j∗−1 : h 7→ h ◦ j−1 is also well defined, which is trivial by Theorem 3.3. We can
see it more clearly by a commutative diagram below.

H/Γ̄ C

C

j

j−1

f = f ◦ j ◦ j−1 = h ◦ j−1h = f ◦ j

Also, there is a famous result that meromorphic functions on S2 = C ∪ {∞} are exactly the
rational functions. We should notice that a weight 0 modular function is not only defined on
H/Γ̄, it is actually a meromorphic function on H/Γ̄∪ {∞}. So we can rewrite this relation in
a more complete way including the point ∞.

4 Modular Forms of Complex Lattices

A complex lattice L is an additive subgroup of the form Zω1 + Zω2 in C, s.t. ω1/ω2 ∈ H.
Denote the set of all complex lattices by L.
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Definition 4.1. A function F : L −→ C is called a modular function of weight 2k, if F
satisfies

F (L1) = λ−2kF (L2),

where L1 = λL2.

Note that any lattice L = Zω1 + Zω2 = λ(Zz + Z) = λLz, with z = ω1/ω2 ∈ H, λ = ω2.
Then for a weight 2k modular function F on lattices, F (L = Zω1 + Zω2) = λ−2kF (Lz), F is
associated to a function f(z) := F (Zz+Z) = F (Lz). Since (ω1, ω2) and (aω1 +bω2, cω1 +dω2)

generate the same lattice with

[
a b
c d

]
∈ Γ = SL2(Z), f then satisfies the property

f(z) = (cz + d)−2kf(
az + b

cz + d
),

which relates modular functions of lattices to ordinary modular function.
We put

G4(L = Zω1 + Zω2) =
∑

m,n∈Z,(m,n)6=(0,0)

(mω1 + nω2)−4 =
∑

06=a∈L
a−4

and
G6(L = Zω1 + Zω2) =

∑
m,n∈Z,(m,n)6=(0,0)

(mω1 + nω2)−6 =
∑

06=a∈L
a−6.

Then we set g4 = 60G4 and g6 = 140G6 for both lattice functions and for associated modular
forms on H.
It is easy to see g4 and g6 are modular functions of lattices and that

g2k(L = Zω1 + Zω2) = λ−2kg2k(z) k = 2, 3

with z = ω1/ω2, λ = ω2, and also ∆ = g3
4 − 27g2

6 and j = 1728g3
4/∆.

Theorem 4.2. For A,B ∈ C, such that A3− 27B2 6= 0, there is a unique lattice L, such that
g4(L) = A, g6(L) = B.

Proof. We consider the equation

A = g4(L = Zω1 + Zω2) = λ−4g4(z)

B = g6(L = Zω1 + Zω2) = λ−6g6(z),

with z = ω1/ω2, λ = ω2. At least A, B cannot be both 0. Without loss of generality, we first
assume A 6= 0. Then we can write

27B2/A3 = 27g6(L)2/g4(L)3 = 27g6(z)2/g4(z)3 = 1− 1728/j(z)

By the property of j, we know that 1− 1728/j(z) is a bijection from H/Γ̄ to (C\{1})∪ {∞}.
Since 27B2/A2 ∈ C\{1}, we can always find a unique solution z ∈ H/Γ̄. For the case A = 0,
we can choose z, the zero of j, to satisfy the equation. Anyway, we can always find a unique
solution z ∈ H/Γ̄, which gives us the lattice Lz. As z is fixed, we choose the value of λ, s.t.

A = λ−4g4(z) = (λ2)−2g4(z)
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B = λ−6g6(z) = (λ2)−3g6(z)

It’s easy to see that we can always choose a unique λ2 to satisfy the above equations, which
gives two solutions λ and −λ. Then L = λLz = −λLz is the unique lattice we are looking
for.

Note that A3− 27B2 is the discriminant of the cubic function f(x) = 4x3 +Ax+B. And we
know that f(x) has three distinct roots ⇐⇒ A3 − 27B2 6= 0.
On the other hand, ∀L ∈ L, g3

4(L)− 27g2
6(L) = λ−12∆(z) 6= 0.

So, each L ∈ L gives a cubic equation y2 = 4x3 + g4(L)x + g6(L). This defines an elliptic
curve on C.
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