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1 Introduction

The goal of this talk is to give a proof of the following result:

The Riemann zeta function can be analytically extended to the whole complex plane except for a simple
pole at 1.

Recall that the Riemann zeta function is defined to be

ζ(s) =

∞∑
n=1

n−s, Re(s) > 1

(the result above extends this domain to C \ {1}).
To this end we will make use of the classical Jacobi theta function, its Mellin transform, and the Gamma

function. Our main reference for this talk is [6, ch. II, §4].
While the Riemann zeta function is interesting on its own for its many number-theoretical properties,

what is of most relevance to us is that our proof will serve to motivate the study of the relation between
modular forms and their associated L-series and L-functions.

The process which we shall describe starts with the Jacobi theta function:

θ(s) =
∑
n∈Z

e−πn
2s, Re(s) > 0.

which can be thought of as a modular form of weight 1
2 (albeit we did not define modular forms of non-integer

weight). We will go into more detail on this later on how this makes sense.
We then apply the Mellin transform on the theta function to “obtain” the Riemann zeta function up to

some scaling and correction terms. Crucially, using the Mellin transform we are able to use various properties
of the theta function itself, in particular the modularity of the theta function (Proposition 3.3), to obtain
the desired analytic continuation of the Riemann zeta function.

More generally, one can start with a modular form f , write it in terms of its Fourier series (in the
presentation given by Etienne and Aurel, they showed that any weakly modular function has a Fourier
expansion. See Corollary 1.8 of their notes):

f(s) =
∑
n∈Z

anq
n =

∞∑
n=0

anq
n (since modular forms are holomorphic at ∞)

where q = e2πis. We then define a Dirichlet series with coefficients taken from the Fourier series called the
L-series (associated with the modular form):

Lf (s) =

∞∑
n=1

ann
−s

In our case, the Riemann zeta function is almost the L-series of the theta function, there is some scaling
needed (you can try writing out the Fourier series of the theta function, it will have coefficients all zero at
the non-square indices, and 2 otherwise).
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It turns out that one can also obtain the L-series, up to some correction terms and scaling, via the
Mellin transform of the modular form, just as in the case of the theta function. As such, what is most
important to take away from this talk, is that one can essentially reproduce the techniques as we
shall describe in this talk with minor adjustments, to obtain the analytic continuation of the
L-series associated to a modular form. This analytic continuation is called the L-function
associated to the modular form.

The L-function associated to a modular form exhibit many properties that are direct analogues with
those of the Riemann zeta function and often posses a great deal of number-theoretical properties, just as
the Riemann zeta function does. For example, just as the Riemann zeta function can be written as an Euler
product (thus indicating some relation with the prime numbers):

ζ(s) =
∏

p prime

1

1− p−s

the L-series of a modular form can be written as an Euler product under certain (most) conditions as well,
see Theorem 25.24 in [7].

We can sum up what we have described by the following diagram:

modular form 3 f fourier series of f L-series L-function

other properties

Mellin transform

put coefficients into Dirichlet series analytic continuation

Now one interesting question people have been asking is whether or not we can “reverse the arrows”.
That is to say, whether we can start with some function that satisfy some common properties that L-series
or L-functions have, and show that it comes from a modular form. This question has a lot of interesting
intricacies and is still being studied in various contexts. One of the earliest results by Hecke in 1935 [5] give
sufficient conditions for a Dirichlet series to be the Mellin transform of a modular form, and a generalization
to “higher dimensional” modular forms was proven by Weil in 1967 [8]. These are termed converse theorems.
Since then there have been many results for various particular cases and generalizations to automorphic
forms, other types of more general L-functions, etc.

In particular, in its most general setting it is studied in what is called the Langlands Program. We are
unfamiliar with the language used in it, so we cannot go into any detail. It suffices to say that in this
setting, extreme generalizations of “modular forms”, and “L-functions” are considered, and there is ongoing
research into undestanding the corresponding relation between them. For those interested, see [3], or maybe
ask Professor Imamoglu or Alessandro about it.

There is however one special case of this question (of “reversing the arrows”) worth noting, to which is
answered by the Modularity theorem. Originally conjectured in various forms by Taniyama, Shimura, and
Weil, and proven by Wiles and Taylor (never forget about the contribution of Richard Taylor!), the theorem
states the following (rather cryptic) result:

Theorem 1.1 (Taylor-Wiles Modularity theorem). Every semistable elliptic curve E/Q is modular.

(Note: We now have a stronger version that does not require seminstability, due to Conrad, Diamond,
and Taylor, see [2])

Roughly speaking, the theorem considers an L-series LE(s) defined by an elliptic curve E, and the theorem
asserts that this series must come from a modular form (via the correspondence of the above diagram of
course). Fun fact: using the techniques presented in this talk, a direct Corollary of this theorem is that the
L-series LE(s) of the elliptic curve has an analytic continuation to an L-function!

This theorem was the last piece needed for the complete proof of Fermat’s Last theorem, evidently a
result of the combined efforts together with many others such as Gerhard Frey, Jean-Pierre Serre, Ken Ribet,
etc.

To sum it up, this correspondence we have described between modular forms and their L-series and/or
L-function is actively studied by many and has many wide ranging implications and connections with other
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topics of mathematics; what we will be presenting today represents only the most primitive example of it.
To reiterate, what is most important is to recognize that the techniques we present today can be reproduced
on modular forms to obtain the analytic continuation of its L-series. That is, starting from a modular form,
we can realize its associated L-series via Mellin Transform up to some correction and scaling, we can then
analytically extend the L-series to an L-function.

By the way, there will also be a talk on L-functions in a couple of weeks, so more details on all this to
be expected.

2 Preliminaries: The Gamma Function

We need some useful facts on the Gamma function, which will appear later when we apply the Mellin
transform on the theta function.

Definition 2.1. The Gamma function is defined to be

Γ(s) :=

∫ ∞
0

e−tts
dt

t
, Re(s) > 0.

It can be checked that the integral convergences absolutely for Re(s) > 0 and defines an analytic function.
The idea is to separate the integral:

Γ(s) :=

∫ ∞
0

e−tts
dt

t
=

∫ 1

0

e−tts−1dt+

∫ ∞
1

e−tts−1dt

The first term has a bound since the decreasing function e−t attains its maximum on [0, 1] at 1, so:∫ 1

0

e−tts−1dt <

∫ 1

0

ts−1dt =
1

s

For the second term, we use the fact that the exponential grows faster than any polynomial, therefore for
any s we can take N ∈ N large enough such that for any t ≥ N implies et/2 > ts−1. Therefore∫ ∞

1

e−tts−1dt =

∫ N

1

e−tts−1dt+

∫ ∞
N

e−tts−1dt

<

∫ N

1

e−tts−1dt+

∫ ∞
N

e−tet/2dt

=

∫ N

1

e−tts−1dt+

∫ ∞
N

e−t/2dt

<∞

See [1, p. 198] for complete details.

Proposition 2.2. The Gamma function satisfies the functional equation

Γ(s+ 1) = sΓ(s).

Proof. We prove this directly using the definition and integration by parts:

Γ(s+ 1) =

∫ ∞
0

e−tts+1 dt

t

= [−e−tts]∞0 +

∫ ∞
0

e−tsts
dt

t
(integration by parts)

= lim
t→∞

(−e−tts)− 0 + s

∫ ∞
0

e−tts
dt

t

= sΓ(s).
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Corollary 2.3. The Gamma function has an analytic continuation on C with simple poles at s = 0,−1,−2, . . . .

Proof. The functional equation satisfied by the Gamma function in Proposition 2.2 can be used to inductively
obtain values of the Gamma function on positive integers. First, re-writing the functional equation we get:

Γ(s) =
Γ(s+ 1)

s

So for any value of s where −1 < Re(s) < 0, and s 6= 0, Γ(s) is well defined and analytic. Thus we have
analytically extended Γ(s) to include the strip −1 < Re(s) < 0. Applying the functional equation as many
times as needed, each time extending the function by another strip towards the negative reals, while adding
a simple pole at the integers, we get at the n-th application of the functional equation:

Γ(s) =
Γ(s+ n+ 1)

s(s+ 1) . . . (s+ n)
.

The right hand side defines an analytic function for all s with Re(s) > −(n+1) and s 6= 0,−1,−2, . . . ,−n.
Since s+n+1 lies in the right half plane for sufficiently large n, we see that Γ(s) has an analytic continuation
to the whole complex planes with simple poles at 0,−1,−2, . . . . Furthermore, by uniqueness of analytic
continuation, it follows that the functional equation of the Gamma function holds for all s ∈ C.

Another property of the Gamma function we will use is that its reciprocal 1/Γ(s) is entire. This can
be derived from the next proposition. We will however omit the proof of the proposition, since it is rather
technical and involves another representation of the Gamma function as an infinite product:

Γ(s) =
1

s

∞∏
n=1

(
1 + 1

n

)s
1 + s

n

.

The details can be found in [1].

Proposition 2.4. The Gamma function satisfies the functional equation

Γ(s)Γ(1− s) =
π

sin(πs)

Proof. See [1, p. 199].

Corollary 2.5. The reciprocal of the Gamma function is entire, i.e.

1

Γ(s)
=

sin(πs)

π
Γ(1− s)

is entire.

Proof. The only poles of the right hand side are simple ones at s = 1, 2, 3, . . . . However, the sine function
has simple zeros at πn for all n ∈ N. Thus, the poles of the right hand side are removable and so 1/Γ(s) is
entire.

Exercise 2.6. Show that Γ(1/2) =
√
π. Hint: you may use that

∫∞
0
e−x

2

dx =
√
π/2.

3 The Jacobi Theta Function

Now to the main protagonist of this talk.

Definition 3.1. The Jacobi theta function, also known as the classical theta function is the function on
right half plane defined by

θ(s) =
∑
n∈Z

e−πn
2s, Re(s) > 0.

For the remainder of our talk, this function will just be referred to by the name theta function.
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Proposition 3.2. The theta function is a holomorphic function on the right half plane.

Proof. Let C be a compact subset of the right half plane. We will show that θ(s) converges uniformly and
absolutely on it. Since each summand of the series is holomorphic, this will imply that the theta function is
indeed holomorphic. For this let y0 = min

x∈C
|Re(x)|. Then for sufficiently large n0 we have for all n ≥ n0 that

n2/y0 ≥ n. This implies for x ∈ C∣∣∣∣∣∣
∑
|n|≥n0

e−πn
2x

∣∣∣∣∣∣ ≤
∑
|n|≥n0

e−πn
2y0 ≤

∑
|n|≥n0

e−πn.

Since the latter is the tail of a geometric series independent of x, we get absolute and uniform convergence
of the theta function on C.

Our goal of this section is to show that the theta function satisfies a functional equation similar to the
weakly modular condition of a modular form.

Proposition 3.3. The theta function satisfies the functional equation

θ(s) =
1√
s
θ

(
1

s

)
, Re(s) > 0

Before we can provide a proof, we need some facts from Fourier analysis.

The Fourier Transform

Definition 3.4. Let S be the vector space of infinitely differentiable functions f : R → C which decrease
at infinity faster than any negative power function, i.e.

S := {f : R→ C : f is C∞ and lim
x→±∞

|x|nf(x) = 0 ∀n ∈ N}.

This space is called Schwartz space.
Then for any f ∈ S we define the Fourier transform of f to be the function

f̂(y) :=

∫ ∞
−∞

e−2πixyf(x)dx. (1)

Exercise 3.5 (trivial). Check that S is indeed a vector space.

Proposition 3.6. The integral (1) converges for all y ∈ R and f ∈ S .

Proof. Since f lies in the Schwartz space, there exists a constant C > 0 such that |f(x)| ≤ C|x|−2
for |x| > 0.

This implies: ∣∣∣f̂(y)
∣∣∣ ≤ ∫ ∞

−∞

∣∣e−2πixyf(x)
∣∣dx ≤ ∫ 1

−1

|f(x)|dx+ 2

∫ ∞
1

C|x|−2
.

Clearly both integrals exist and so the Fourier transform converges.

Lemma 3.7. If b > 0 and g(x) = f(bx), then

ĝ(y) =
1

b
f̂
(y
b

)
.
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Proof. We compute ĝ(y) directly:

ĝ(y) =

∫ ∞
−∞

e−2πixyf(bx)dx

=

∫ ∞
−∞

e−2πi zb yf(z)
dz

b
(make a change of variables z = bx)

=
1

b

∫ ∞
−∞

e−2πi yb zf(z)dz

=
1

b
f̂
(y
b

)
.

Proposition 3.8. If f(x) = e−πx
2

, then f̂ = f .

Proof. First note that

f̂ ′(y) =
d

dy

∫ ∞
−∞

e−2πixyf(x)dx = −2πi

∫ ∞
−∞

e−2πixyxe−πx
2

dx. (2)

Differentiation under the integral is fine, since∣∣∣∣ d

dy
(e−2πixye−πx

2

)

∣∣∣∣ ≤ ∣∣∣2πxe−πx2
∣∣∣ (3)

which is integrable.

Now we integrate the right-hand side of (2) by parts to get

f̂ ′(y) = −2πie−2πixy 1

−2π
e−πx

2

∣∣∣∣∞
−∞

+ 2πi

∫ ∞
−∞
−2πiye−2πixy e

−πx2

−2π
dx

= −2πy

∫ ∞
−∞

e−2πixyf(x)dx

= −2πyf̂(y)

Therefore f̂ satisfies the differential equation

f̂ ′(y) = −2πyf̂(y),

which has solution
f̂(y) = Ce−πy

2

.

We can solve for C by setting y = 0:

C = f̂(0) =

∫ ∞
−∞

e−πx
2

dx = 1.

Therefore we conclude
f̂(y) = e−πy

2

,

as desired.

We describe such a function with the property shown in Proposition 3.8 as being self-dual.

Remark. We are justified to pass the differential under the integral in the beginning of the above proof
(equation (2)) by the following fact from abstract integration theory, the (general) Leibniz integral rule:

Let X be an open subset of R , and Ω be a measure space. Suppose f : X×Ω→ R satisfies the following
conditions:
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1. f(x, ω) is a Lebesgue-integrable function of ω for each x ∈ X.

2. For almost all ω ∈ Ω, the derivative fx exists for all x ∈ X.

3. There is an integrable function θ : Ω → R such that |fx(x, ω)| ≤ θ(ω) for all x ∈ X and almost every
ω ∈ Ω.

Then for all x ∈ X,
d

dx

∫
Ω

f(x, ω)dω =

∫
Ω

fx(x, ω)dω.

The proof of which chiefly uses the dominated convergence theorem. See [4, p. 125] for details.

Proposition 3.9 (Poisson Summation Formula). If f ∈ S , then∑
m∈Z

g(m) =
∑
m∈Z

ĝ(m).

Proof. Define

G(x) =
∑
n∈Z

g(x+ n).

Then G(x) is 1-periodic and has Fourier series

G(x) =
∑
k∈Z

cke
2πikx, (4)

where we can calculate the Fourier coefficient

ck =

∫ 1

0

∑
n∈Z

g(x+ n)e−2πikxdx

=
∑
n∈Z

∫ 1

0

g(x+ n)e−2πikxdx

=
∑
n∈Z

∫ n+1

n

g(x)e−2πikxdx

=

∫ ∞
−∞

g(x)e−2πikxdx

= ĝ(k).

The second equality is justified, because g ∈ S implies there exist constants Cm > 0 s.t. |g(x)| ≤
Cm|x|−m for all m ∈ N. Hence for sufficiently large n0∑

|n|≥n0

|g(x+ n)| ≤
∑
|n|≥n0

Cm|x+ n|−m

for all m ∈ N and thus the tail of the series gets arbitrarily small. This implies G(x) converges absolutely
and uniformely on all compact sets.

Therefore we can write (4) as

G(x) =
∑
k∈Z

ĝ(k)e2πikx.

In particular setting x = 0 we get

G(0) =
∑
n∈Z

g(n) =
∑
k∈Z

ĝ(k)

as desired.
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We are now ready to prove the functional equation of the theta function:

Proof of Proposition 3.3. Recall that we want to show that

θ(s) =
1√
s
θ(1/s)

for all s in the right half plane. We do this by showing that both sides agree on the positive real axis. Then,
since both sides of the equation define an holomorphic function on the right half plane which are identical on
the positive real axis, we are done by uniqueness of analytic continuation. Note also that we have to choose
the branch of the square root with positive real part to make the right hand side well defined.

So fix t > 0 and define
g(x) = e−πtx

2

.

We can write this function as
g(x) = f(

√
tx), where f(x) = e−πx

2

.

Then by Lemma 3.7, we have

ĝ(y) =
1√
t
f̂

(
y√
t

)
and by Proposition 3.8,

ĝ(y) =
1√
t
f

(
y√
t

)
=

1√
t
e−πy

2/t.

Now by the Poisson summation formula (Proposition 3.9), we have∑
m∈Z

e−πtm
2

=
∑
m∈Z

1√
t
e−πm

2/t,

which we can re-write as

θ(t) =
1√
t
θ

(
1

t

)
.

Remark. Note that we required a modular form f of weight k to be a 1-periodic meromomorphic function
on the upper half plane satisfying f(−1/τ) = τkf(τ) for all τ ∈ H. Now in that context, the theta function
can be understood as a modular form of ”half integer weight”. Although we did not define such modular
forms, the functional equation of the theta function gives a hint on what is meant. Furthermore, if you want
to be precise, we have to make a transformation to change the domain of definition to the upper half plane
and normalize the theta function to make it 1-periodic.

Next, we will study the behaviour of the theta functions near zero and infinity.

Proposition 3.10. There exists a constant C > 0 such that for all sufficiently small t > 0 the following
inequality holds: ∣∣∣θ(t)− t−1/2

∣∣∣ < e−C/t.

Proof. Note that we can rewrite the theta function as

θ(t) = 1 + 2

∞∑
n=1

e−πn
2t. (5)

Using this fact and the functional equation for the theta function, we get∣∣∣θ(t)− t−1/2
∣∣∣ =

∣∣∣t−1/2(θ(1/t)− 1)
∣∣∣ = t−1/22

∞∑
n=1

e−πn
2/t.

Now suppose t > 0 is sufficiently small so that
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4e−1/t <
√
t and e−3π/t < 1/2.

Then we get ∣∣∣θ(t)− t−1/2
∣∣∣ = t−1/22

∞∑
n=1

e−πn
2/t

<
1

2
e1/t

∞∑
n=1

e−πn
2/t

=
1

2
e−(π−1)/t

∞∑
n=1

e−π(n2−1)/t

=
1

2
e−(π−1)/t

∞∑
n=1

e−π(n+1)(n−1)/t

≤ 1

2
e−(π−1)/t

∞∑
n=1

e−3π(n−1)/t

≤ 1

2
e−(π−1)/t

∞∑
n=1

2−(n−1)

= e−(π−1)/t.

Thus, C = π − 1 does the job.

Corollary 3.11. The limit of θ(t) as t goes to infinity is 1 and for sufficiently large t > 0, there exists a
positive constant C such that

|θ(t)− 1| ≤ e−Ct/
√
t.

Proof. If t is large, then 1/t is small, so the previous proposition tells us that∣∣∣θ(1/t)−√t∣∣∣ ≤ e−Ct.
Applying the functional equation we get ∣∣∣√tθ(t)−√t∣∣∣ ≤ e−Ct.

The Mellin Transform

The Gamma function is a special case of a construction known as the Mellin Transform:

Definition 3.12. Given a function f(t) defined on the positive real axis, its Mellin transform is the function
Mf (s) defined to be

Mf (s) :=

∫ ∞
0

f(t)ts
dt

t
,

which is defined for all values s for which the integral exists.

Therefore, Γ(s) is the Mellin transform of e−t.
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4 The Riemann Zeta Function

Theorem 4.1. The Riemann zeta function ζ(s) for Re(s) > 1 extends analytically onto the whole complex
plane, except for a simple pole at s = 1 with residue 1. Furthermore, let

Λ(s) := π−s/2Γ
(s

2

)
ζ(s)

then
Λ(s) = Λ(1− s),

i.e. ζ(s) satisfies the functional equation

π−s/2Γ
(s

2

)
ζ(s) = π−(1−s)/2Γ

(
1− s

2

)
ζ(1− s).

Proof. The basic idea behind the proof is to consider the Mellin transform
∫∞

0
tsθ(t)dt

t of the theta function.

However, the preceding proposition and corollary tell us that that the theta function behaves like t−1/2 at 0
and converges rapidly to 1 at infinity. So we have to introduce some correction terms to make the integral
converge. In addition, we have to replace s by s/2 as otherwise we would get ζ(2s). So define

φ(s) :=

∫ ∞
1

(θ(t)− 1)ts/2
dt

t
+

∫ 1

0

(
θ(t)− 1√

t

)
ts/2

dt

t
.

Now Proposition 3.10 implies that the theta function converges rapidly to 1/
√
t as t goes to zero, so the

second integral converges. Similarly, Corollary 3.11 implies that the first integral converges. Evaluating the
second integral, assuming Re(s) > 1, we get:∫ 1

0

(
θ(t)− 1√

t

)
ts/2

dt

t
=

∫ 1

0

θ(t)ts/2
dt

t
−
∫ 1

0

t(s−1)/2 dt

t

=

∫ 1

0

( ∞∑
n=−∞

e−πn
2t

)
ts/2

dt

t
− 2

s− 1

(5)
=

∫ 1

0

ts/2
dt

t
+ 2

∫ 1

0

( ∞∑
n=1

e−πn
2t

)
ts/2

dt

t
+

2

1− s

= 2

∞∑
n=1

∫ 1

0

e−πn
2tts/2

dt

t
+

2

s
+

2

1− s
.

Therefore for Re(s) > 1 we have

φ(s) = 2

∞∑
n=1

∫ ∞
1

e−πn
2tts/2

dt

t
+ 2

∞∑
n=1

∫ 1

0

e−πn
2tts/2

dt

t
+

2

s
+

2

1− s

= 2

∞∑
n=1

∫ ∞
0

e−πn
2tts/2

dt

t
+

2

s
+

2

1− s
.

After the substitution t 7→ 1/t we get

1

2
φ(s) =

∞∑
n=1

(πn2)−s/2Γ
(s

2

)
+

1

s
+

1

1− s

= π−s/2Γ
(s

2

)
ζ(s) +

1

s
+

1

1− s
.

Now since both integrals in the definition of φ(s) converge, it is in fact an entire function. So we can
define an analytic continuation of the zeta function on the whole complex plane, which agrees with ζ(s) for
Re(s) > 1, by

ζ(s) =
πs/2

Γ(s/2)

(
1

2
φ(s)− 1

s
− 1

1− s

)
,
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whose only possible poles are at s = 0 or s = 1 as φ(s) and 1/Γ(s) are entire. However, we can replace
sΓ(s/2) in the denominator by 2/(s/2)Γ(s/2) = 2Γ(s/2 + 1) which converges to 2Γ(1) as s goes to zero.
Hence it is nonzero and the only pole is at 1. We now compute the residue there using Exercise 2.6:

lim
s→1

(s− 1)
πs/2

Γ(s/2)

(
1

2
φ(s)− 1

s
− 1

1− s

)
=

π1/2

Γ(1/2)
= 1.

We are therefore left with showing that Λ(s) = Λ(1− s). Since Λ(s) = 1
2φ(s)− 1/s− 1/(1− s) and the

term −1/s− 1/(1− s) does not change if we replace s by 1− s, it suffices to check that φ(s) = φ(1− s):

φ(s) =

∫ ∞
1

ts/2(θ(t)− 1)
dt

t
+

∫ 1

0

ts/2
(
θ(t)− 1/

√
t
) dt

t

=

∫ 1

0

y−s/2(θ(1/y)− 1)
dy

y
+

∫ ∞
1

y−s/2(θ(1/y)−√y)
dy

y

=

∫ 1

0

y−s/2(
√
yθ(y)− 1)

dy

y
+

∫ ∞
1

y−s/2(
√
yθ(y)−√y)

dy

y

=

∫ 1

0

y(1−s)/2(θ(y)− 1/
√
y)

dy

y
+

∫ ∞
1

y(1−s)/2(θ(y)−√y)
dy

y

= φ(1− s),

where we used the transformation y = 1/t in the second equality and the transformation law for the theta
function in the third. Thus, the proof is complete.
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