HECKE OPERATORS AND L-FUNCTIONS OF MODULAR
FORMS

AMR UMERI, MUZE REN

1. MOTIVATION

We want to define Hecke operators, which are linear maps, indexed by m € N and
sending modular forms of a given weight k£ to modular forms of the same weight and
cusp forms to cusp forms:

T : Mp(SL(2,7Z)) — Mp(SL(2,7)),

T Se(SL(2,72)) — Sp(SL(2,2Z)).
Hecke operators enable us to apply methods from linear algebra into the theory of
modular forms: Hecke operators are pairwise commuting and self-adjoint on Sj,(SL(2, Z)),
where the hermitian form is taken to be the Petersson inner product. Hence by Spec-
tral Theorem we have the existence of an orthonormal basis of Sy(SL(2,7Z)) consist-

ing of simultaneous eigenfunctions (called Hecke eigenforms) of all of the operators
T, m € N.

2. DEFINITION OF HECKE OPERATORS AND THEIR FIRST PROPERTIES

Fix m € N and consider the space: M,, = {A € Mat(2,Z) | det A= m}. We have
an action of SL(2,Z) on M,, by left-multiplication:

SL(2,Z) x My, — M.

Hence we have a decomposition of M,, into orbits. Hecke operators can be thought
of as averaging operators on the space of modular forms, where the sum is taken
over orbit representatives of the above action. Before defining the Hecke operators
we want to study the above action and give explicitly a set of orbit representatives
of the group action. This will be done in the following proposition:

Proposition 2.1. A set of orbit representatives of the above action is given by the
following matrices:

Mm’—{<8 Z) lad=m, 0<b<d—1,d> 0}

Moreover two different elements of M,," are inequivalent, meaning that each element
gives rise to a distinct orbit.

Proof. First we want to show that each element A € M,, appears in some orbit.

Hence we want to find v € SL(2,7Z) and (8 Z) € M,," such that y1A = <8 2) :

x
2) € M, and set: a = (z1,23), M1 = 2, 73 = “. Hence

a’

First let A = (!
T3 T4

(71,73) = 1 and by lemma of Bézout we can find 9, v4 € Z such that vy, —y2y3 = 1.
Hence (zl 22> € SL(2,Z). Now counsider the following calculations:
3 V4

1
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(’Yl ’Y2> ' (961 962) _ (’74331 — Y23 4Tz — 72954) _ (a Va2 —7251?4>
Y3 V4 T3 Iy Y1T3 — V3T Y1T4 — Y3T2 0 mzy —y322)°
This follows from:

VaT1 — YTz = YaY10 — Yoy3a = a(V17s — V273) = a.

YTz — Y31 = N17y3a — y3a = 0.

Now set: b = v4x9 — o4, d = V124 — Y322.

/
Hence we have y71A = (C)L Z . We can ensure that d > 0 by multiplying from the
left by the matrix (_01 _01) . By the division algorithm we can also find b = &' — kd,

where £k € Z and 0 < b < d — 1 then we just multiply from the left by ((1) _1k)

to obtain the matrix with the desired properties: (8 Z) It remains to prove that
ad = m. This follows by simple calculations or by observing that v'A = (8 Z), for

some v € SL(2,7Z) and that the determinant of A equals m.
Now we want to prove the second claim, namely that different elemens in M,,," give

/ /
different orbits. Let (8 Z), (O(L) Z,) € M,,’. Assume there is v € SL(2,7Z) such
that

a b [d UV
T\o a) " \o @)

ayi by+dy) _ fd V
ays ays+dy) \0 d)°
This implies that v3 = 0, but then since v;74 = 1, we have that: ~;,v = 1 or— 1.

Since d,d" > 0, we have that v = v = 1. But then d = d and 0 < b,/ < d -1
implies that —d 4+ 1 < b—V < d—1. But b — b = dy. Hence 7o = 0. Hence ~

. . . . : b Y
is necessarily the identity matrix and (8 ) = <a

This means that

0 d’)' The converse implication

proves the claim.
Before defining the Hecke operators we need to recollect some definitions:

Z) € GLy(R) and z € H. Define j(v,2) = cz +d.

Now let f : H — C and an integer k fixed. Define the function?
f[’ﬂk: H — C,

Fe(z) = (det 7)*2j(y, 2) 7" f(72).
This function has the following properties:

Definition 2.2. Let v = (CCL

flnvele = fimlelrele Y772 € GL3 (R),
f = flv]x is a linear operator Vv € GL3 (R).

n literature one often finds the following notation for this function: f %2
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Remark 2.3. In general we cannot expect f[A]x to be a modular form for arbitrary
A€ GLI(R) and f € My(SL(2,7Z)). Hecke operators (which will be defined below)
are special in that regard: By summing elements of the form f[A] for a given modular
form f we indeed get back a modular form!

Now we are ready to define the Hecke operators:

Definition 2.4. Let m € N. We define the m-th Hecke operator T,, as follows:
For f € M,(SL(2,7Z)) let

(2.1) Tonf =m0 3" A

AEMp, [~

The sum is meant to be taken over arbitrary orbit representatives.? After showing that
the above statement is well-defined, i.e independent of the choice of orbit represen-
tatives, we can insert our distinguished set of orbit representatives from proposition

2.1 to obtain: e
o k/2—1 a b
Tt = S 521[ (5 )],

ad=m b=0
d>0

For z € H we have:

Tof(z) = m 1 S dzid-kf(“’z;b)

ad=m b=0
d>0

Lemma 2.5. The Hecke operators are well-defined, i.e the definition does not depend
on the choice of orbit representatives.

Proof. We want to show now that the Hecke operators are well-defined. For this let
N be the (finite) number of orbits and Let {A; i =1,...,N},{A]i=1,...,N}
be two arbitrary orbit representatives. Then up to reordering of the indices we have
that A; = v; Al for some v; € SL(2,Z),i = 1,...,N. Then the claim follows directly
from the weak modularity of f:

Zf[Ai]k = Zf[%Aﬂk = Zf[%]k[Aﬂk = Zf[Aﬂk-

Theorem 2.6. Let m € N, f € My(SL(2,Z)). Then T,,f : H — C is
(1) holomorphic on H,
(71) holomorphic at oo,
(111) weakly modular of weight k on SL(2,7Z).
Hence T,,f € Mg(SL(2,Z)) and T,, : My(SL(2,Z)) — My(SL(2,Z)) is a linear
operator on the space of modular forms of weight k.

Proof. The first claim is obviously true. The second claim will follow from the next
lemma, where we will discuss the action of 7T,, on the Fourier expansion of f €
My(SL(2,Z)). Let us prove the third claim. Given f € M(SL(2,Z)) we must show
that:

Tof Ve = Tf Vv € SL(2,7Z).

2This notation may seem ambiguous, since the elements in M,,/ ~ are orbits. However this
should not lead to any confusion.
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Consider the following:

Tofble = (w270 30 flAL) Bl =m0 3 flAyh = Tuf.

AEM,y, [~ A€My, [~

The second equality follows from known properties. The last equality follows from
the fact that {Ay | A € M,,/ ~} is another set of orbit representatives. O

To prove holomorphicity at oo, we need to know how the Hecke operator acts on
the Fourier expansions of modular forms. For that let us consider the next lemma:

Lemma 2.7. Let f € My(SL(2,Z)) have the Fourier expansion:

fe's)

. 2minz

= E fne™".
n=0

Then the Fourier expansion of T,,f is given by the following formula:

mf Z ( Z ak lfmn) 2minz.
n=0 “aln,m
Hence T,,f is holomorphic at oo.
Proof. We need the following easy result for the proof:
d—1 .
Z p2minb/d _ d, ifd|n '
— 0, otherwise

Let f(z) = > 7, [2>™" be the Fourier expansion. Applying the Hecke operator we
obtain:

d—1 00
Tmf(z) = mk_l Z Zd_k an€2mnaz;b = % Z Z an 2min 4z an

ad=m b=0 n=0 ad=m b=0 n=0
d>0 d>0
m > m >
k-1 2min4E k-1 2minaz
= E (E) E fne 4 = E (E) E Jnae
ad=m n=0 ad=m n=0
d>0 d|n d>0

_ Zak 1 Zf 27rinaz _ Zzak 1f 27rzrz

alm r=0 a|m
alr

O

Corollary 2.8. If f € S,(SL(2,2Z)), then T,,f € Sk(SL(2,Z)). Hence the Hecke
operators maps cusp forms to cusp forms and we have the restriction map:

T, : Sy(SL(2,Z)) — Si(SL(2,Z)).

The next goal is to show that the Hecke operators 7, form a commuting family of
endomorphisms on My (SL(2,7Z)) and Sp(SL(2,7Z)).

Lemma 2.9. If (m,n) =1, then T,,T,, = Ty = T T
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Proof. Let f € My(SL(2,Z)). Let f(z) = >.2, f€*™* be the Fourier expansion.
Consider the mn-th Hecke operator T},,,. It has the following Fourier expansion:

Tmnf<z) _ i ( Z tk_lfwl)szrz.

r=0 “tlr,mn

Now there is a bijection (exercise) between the tuples of divisors

{(a,b) | a|r,b|r,a|n bjm} and the divisors {t | t|r,tjmn} given by (a,b) — ab. (Here
we use the first time that (n,m) = 1). Hence we can rewrite the above sum in the
following way:

mnf i( Z ak_lbk_lfrmn> 2mirz i (ZZ k— lbk 1 ”’Zg) 27ri7‘z.

r= ab|r,mn r=0 >b|r,malr,n

Now consider the n-th Hecke operator T,,. Tt has the following Fourier expansion:
T.f( Z(Zak 1frn) 2mirs
r=0 Nalrn
Now set f =T, f and apply the m-th Hecke operator. This gives:
Tu(Tu)E) = () = 3 (30 fop ).
r=0 Nblrm
Now notice that fy is the k-th Fourier-coefficient of T, f. Hence:

3 _ k-1
= )

a|Tb—72",n

Now inserting the Fourier-coefficient into the above sum we get:
k—11k—1 2mirz

E < E E a b f:gzg)e .

r=0 b\rmav'”

But now consider the following:

a|% implies that a[rm. By assumption a|n. Hence by using for the second time
that (n,m) = 1, we have that (a,m) = 1. Then a|rm implies that a|r. (This can be
proven by lemma of Bézout).

Hence the above sum simplifies to:

Z (Zzak 1bk: 1frmn> 27rirz'

r=0 >b|r,malr,n

What we have shown is that for arbitrary f € My(SL(2,7Z)) it holds that T,,7,,f =
Tnf- Now the claim follows easily from the commutativity of the natural numbers:

O

Lemma 2.10. Let p be a prime number. Then we have the following:
V?“, seN: Tpers = TpsTpr.
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Proof. See for example: |2] or see [1] for a different approach. O
Theorem 2.11. The Hecke operators commute:
vYm,n e N: T,T, =T,T,,.

Proof. Let m,n € N. By prime factorization, put: n = pi"* .. .p?j, m = qfl . q,f"
Then:

TnTm = Tp(lxl e Tp?j qul e tqfk .
Now, if p; = ¢ for some 1,1, we can commute them by lemma 2.10. If they are not
equal, we can commute them by lemma 2.9. Hence the claim follows. 0

We will state an important property of the Hecke operators on Si(SL(2,Z)),
namely that they are self-adjoint w.r.t the Petersson inner product:

Theorem 2.12. The Hecke operators T,, : Sp(SL(2,Z)) — Sp(SL(2,Z)) are self-
adjoint w.r.t the Petersson inner product, i.e

(Tof,9) = ([, Tmg) ¥ [,9€Sk(SL(2,Z)).

Proof. First one shows that the statement is true for Poincaré-series. Then one notices
that the Poincaré-series span Si(SL(2,Z)) (last talk). See for example: [6], theorem
6.12. O

3. DIRICHLET SERIES ASSOCIATED TO MODULAR FORMS

Each modular form f € M (SL(2,Z)) has an associated Dirichlet series, its L-
function. Let f(z) = > 77, a"e*™* be its Fourier expansion, let s € C be a complex
variable, and write formally

L(s, f) = Zann"s.
n=1
Convergence of L(s, f) in a half plane of s-values follows from estimating the Fourier

coefficents of f. Note that the Dirichlet series begains from 1.

Proposition 3.1. If f € M (SL(2,72))) is a cusp form then its fourier coefficients
satisfy a, = O(nF/?). If f is not a cusp form then its fourier coeffients satisfy
a, = O(nk).

Proof. let ¢ = 2™ = ™=+ et g(q) = > °° | a,q", a holomorphic function on the

unit disk ¢ : |¢| < 1, then for any r € (0,1), we have
1 —n ! . —2min(z+i
an=5—- | 90 dq/q—/ fla+iy)e 2T W dy
X lg|l=r =0

for any y > 0, and letting y = 1/n

1
ap = €7 f(z +i/n)e” 2y
=0
Since f is a cusp form, we know that it decays rapidly when it approaches the
cusp. Thus Im(7)¥/2| f(7)| is bounded on the upper half plane, so estimating the last
integral, we kown that |a,| < Cn*/2  then we get the result.
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If E) is an Eisenstein series in My(SL(2,7Z)), its nth Fourier coefficient of f is
o-1(n), and

oy = de—1 _ Z<g)k—1 — k-t Z % < nk—1C<k —1)

dn dln dln

we have that |a,| < Cnf~L. Since every modular form is the sum of a cusp form and
an Eisenstein series, the rest follows. 0

Corollary 3.2. if f € M(SL(2,2Z)) is a cusp form then L(s, ) converges absultely
for all s with R(s) > k/2+1. If f is not a cusp form then L(s, f) converges absolutely
for all s with R(s) > k

Remark 3.3. Daniel Bump in [3| remarked that: The estimate |a,| < Cn*/? called
the trival estimate, is due to Hardy (1927) and (more simply) Hecke (1937). The
correct estimate |a,| < Cn*=1/2+¢ for any € > 0 was conjectured (for f = A) by Ra-
manujan (1916); this famous statement, the Ramanugjan conjecture, was finally proved
around 1970 by Deligne(1971) using difficult techniques from algebraic geometry.

In order to estimate the convergence of some integrals which we will use later, we
need the following lemma

Lemma 3.4. For a sequence {a,}>°, of complex numbers, for z € H, put
(3.1) f(z) = Zane%mz,

n=0
and a,, = O(n") with some v > 0. Then the right-hand side of equation 3.1 convergent
absolutely and uniformly on any compact subset of H, and f(z) is holomorphic on H.
Moreover,

f() = O(tm(=)")  (Im(z) - 0)
f(2) —ag = O(e™ ™)) (Im(z) — o0)
uniformly on R(2)

Proof. By the formula
n!nv—H
I'v+1) = lim ,
( ) nooo (V+1)(v+2)...(v+n+1)

we have for v > 0,

n—o0 n

And because a,, = O(n"), there exisits L > 0 such that

ol < 20 (77

for all n > 0. Put z = = + iy, then we have

00 ‘ 00 -1
" 2minz| L —1)" v —27mny
n§0|a [l < LY (=1 )er ™)

n=0
_ L(]_ _ 6—27Ty)—v—1

Because (1 —e™2™) = O(y) as y — 0, we see that |f(2)| = O(y~v71), also we have
f(2) is bounded when y — 0.

lim nv/(—w(_” - 1> _T(v+1),
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As f(2) —ap = (307 s an1€2™%), and Y 0 a,1€2™"* also satisfy the as-
sumption of the lemma, by the conclusion we just proved, it is bounded when y — oo.
Therefore, we have as y — oo

[e.9]

f(Z) —ay = 627rinz(z an+1627rinz) _ O(e—Qﬂy)
n=0

O

Proposition 3.5. The L-function L(s, f) has meromorphic continuation to all s and
satisfies a functional equation. In fact, if

A(s, f) = (2m)~°T'(s)L(s, [)
then A(s, f) extends to an analytic function of s if f is a cusp form; if it is not a
cusp form, then it has simple poles at s =0 and s = k. In general, it satisfies

A(87 f) = <_1)k/2A(k - S, f)
Proof. By the lemma 3.4, we know that for t > 0 and R(s) > k+1, Y 07 a,e” ™

and Y | [ a,t*e?™t"1dt converges absolutely.
For R(s) > k + 1, we have

A(s, f) = (2m)7°T'(s) L(s, [)

:Zan(%m)s/ et

n=1 0

=> / ant’e 2™ dt
n=1 0

:/oo ts(i ane—27mt)tfldt
0 n=1
:/mﬁﬁwywmt%t
0
— _@ = —S £ -1 = s ) -1
= —1—/1 2 f(i/t)t dt—l—/1 t°(f(it) —ap)t ™ dt

Because f is a modular form, we have f(it) = (=1)¥/2t=% f(i/t), then
A(s; f) = —@—%ﬂ—l)k/2 /Oo tk_s(f(it)—ao)t_ldtJr/oo t*(f(it)—ao)tdt
1

S k—s 1
By the lemma 3.4, we have

(3.2)

f(it) = ag = O(e™*™),
so that -
/ th=S(f(it) — ap)t~'dt
and 1 -
/ t5(f(it) — ap)t 'dt
1

converges absolutely and uniformly on any vertical strip. Therefore they are holo-
morphic on the whole s-plane. If we define A(s, f) for any s € C by the integral,
it is then a meromorphic function on the whole s-plane. The functional equation
follows. O
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Now we consider the Euler property of the L-function.

As Daniel Bump remarks in the [3]: the first historical hint that a Euler product
should be associated with the L-series of a modular form came from Ramanujan’s
investigation of A. The Fourier coefficients of A comprise Ramanujan’s tau function:
A(z) = > 7(n)¢™. Ramanujan (1916) conjectured, and Mordell (1917) proved shortly
afterward, that

[e.e]
Y o =] =r@p+p" )"

n=1 p
The true explanation of this identity requires the theory of Hecke operators.

The Hecke algebra is a commutative family of self-adjoint operators on the finite-
dimensional vector space Si(SLy(Z)), by the spectral theorem, we konw there exists
a basis of functions which are eigenfunction of all the Hecke operators. We call them
the Hecke eigenform.

We will show that these eigenforms has the property of Euler product. And also it is
interesting to notice that after some normalization. We can find that the eigenvalues
of the Hecke operator are hidden in the Fourier coeffients of the so called normalized
Hecke eigenform.

Proposition 3.6. Now we suppose that f is a Hecke eigenform. Let f, denotes its
Fourier coefficients. Then f, satisfy the following:

(1) fi #0

(2) if f =1, then A(n) = f,, for all n

(3) if f1 = 1 then the coeffients f, are multiplicative; that is, if (m,n) = 1, we
have fmn = fmfn

Proof. By lemma 2.7 , we have that
(3.3) An)fn =Y a7 fuy
aln,alm

Suppose that (m,n) = 1. Then the only a that divides both m and n is a = 1, so it
reduces to

(3.4) A1) fm = fam
Taking m = 1, this implies that f, = \(n)f1, then we get the conclusion. O

Thus we can adjust the coeffient of the Hecke eigenform by making f; = 1, such a
Hecke eigenform will be called normalized.

Theorem 3.7. If f is a normalized Hecke eigenform, then

(3.5) L(s, f) = Z R — H(l — fp* _f_pk—l—zs)q

n>1 p

Proof. Because the coeffients of f is multiplicative, then we have

L(s, f)=>_ fin = =T[O_ forp™™)

n>1 p

In order to prove equation 3.5, we only need the equity

(1 . fpp—s _'_pk—l—Qs)(Z fprp_TS) -1
r=0
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To prove this, first observe that by lemma 2.7, we have
_ k—1
/\<n)fm - Z a f%
aln,alm
by taking m = p",n = p, then we have
fp7'+1 — fpfpr + pk—lfprfl = 0

Multipling by X"*!, and summing this equation for » > 1, we have

DS XS (LX) X+ Y (0T X (fra X =0

r>1 r>1 r>1

by adding the corresponding term, we have

DS X =Y LX) X+ ) 0 X (fr XT) = 1

r>0 r>0 r>0
that is

1= X+ X0 frX7) =1
r=0
taking X = p~*, we get the Euler product.

This section is based on [3] and [5].

4. HECKE’S CONVERSE THEOREM
We first write the following condition for conveience to quote later.

Condition 4.1. let f(z) be a function on H, f(2) has a fourier expansion

f(Z) _ Zane%rinz’
n=0
which converges absolutely and uniformly on any compact subset of H. And there
exists v > 0 such that:
f(z) = O(Im(2)™"), (Im(z) — 0),
uniformly on R(z).

If f is holomorphic on H, satisfies the condition 4.1, then by a similar proof as
propostion 3.1, we have that a, = O(n").

Remark 4.2. By the above lemma 3.4, all holomorphic functions f(z) on H satisfying
the condition 4.1 correspond bijectively to all sequences {a, }>° ; of complex numbers
such that a, = O(n") with v > 0.

Theorem 4.3 (Phragmen-Lindelof). For two real numbers vy, ve v1 < v, put
F ={s € Clvy <R(s) < vy}
Let ¢ be a holomorphic function on a domain contating F satisfying
()] = O(eT") (7] = 00), s =0 +ir
uniformly on F with 6 > 0. For real number b, if on R(s) = vy and R(s) = vy,
|6(s)] = O(I7I°) (I7| = o0)
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then uniformly on F, we have:

[6(s)] = O(71°) (7| = o0)

Proof. By assumption, there exists L > 0 such that |¢(s)| < Lel™’. First consider
the case when b = 0. Then there exist M > 0, such that |¢(s)| < M on the lines
R(s) = v; and R(s) = ve. Let m be a positive integer such that m =2 mod 4. Put
s = o + i7. Since R(s™) = R((o +i7)™) is a polynomial of ¢ and 7, and the highest
term of 7 is —7™, we have

R(s™) = =7 + O(|7|" ) (7] = o0),
uniformly on F, so that R(s™) has an upper bound on F. Taking m and N so that
m > ¢ and R(s™) < N, we have, for any € > 0, on R(s) = v; and R(s) = v,

[@(s)e" | < Me ™,
and
()™ = Ol ™) .0, (J7] = oo)
uniformyly on F. By the maximum principle, we see
|6(s)e”" | < Me™, (s € F)
Letting ¢ — 0, we obtain that |¢(s)] < M, namely, ¢(s) = O(|7]?). Next assume
b # 0. We define a holomorpic function:
W(s) = (s — v1 + 1) = blosls—urrD)

where log takes the principal value. Since

R(log(s —v1 + 1) = log(|s — vy + 1|),
we have uniformly on F'

()| = |s — o1+ 11" ~ |7]" (7] = o0)

Put ¢1(s) = ¢(s)/1(s). Then ¢ (s) satisfies the same condition as ¢ with b = 0, so
that by the above result, ¢;(s) is bounded on F, thus we get the result for arbitrary
b.

O

For a holomorphic function f(z) = >_°7 a,e*™* on H satisfying condition 4.1,
we put L(s, f) = > 7, a,n~%, since a, = O(n"), L(s, f) converges absolutely and
uniformly on any compact subset of R(s) > 1 + v, so that it is holomorphic on

R(s) > 1+ v. We call L(s, f) the Dirichlet series associated with f. For N > 0, we
put Ay (s: f) = (21/v/N) T (s)L(s, f)
Theorem 4.4. Let f(z) =Y o a,e*™™ and g(z) = Yo7, b,e*™™* be holomorphic

funtions satisfying the condition 4.1. For positive k and N, the following condition
(1) and (2) are equivalent.

(1) 9(2) = (—iV'Nz)"Ff(~1/Nz)
(2) Both An(s; f) and Ax(s;g) can be analytically continued to the whole s-plane,
satisfy the functional equation

An(s; f) = An(k—s;9),

and
bo

k—s

Aw(sif)+ 5+
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15 holomorphic on the whole s-plane and bounded on any vertical strip o1 <
%(3) S 9.
Proof. From (1)= (2): similar to the proof of proposition 3.5.
From (2)=(1) By the Mellin inversion formular: For o > 0,
1
et=— [(s)t%ds,
2mi R(s)=0c

let t = 2mny, we have

N - .
Fiw) = 55 D / ) T

for any o > 0. If @« > v+ 1, then L(s, f) = > .72, a,n"* is uniformly convergent and

n=1

bounded on Re(s) = a, so that by the Stirling’s estimate
[(s) ~ Vorro Y 2emmITl/2 (s =0 +ir,|T| — 00),
An(s; f) = (2n/V/N)~*T(s)L(s; f) is absolutely integrable. Therefore we can ex-
change the order of summation and integration, and
: 1 s
i) = 5 [ R s +ao
R(s)=c

2mi

Since L(s; f) is bounded on R(s) = «, we see, for any p > 0,

[An(s; ) = O([Im(s)[™*) ([Im(s)] — oo)
on R(s) = «a by Stirling’s estimate. Next take § so that k — 5 > v + 1. A similar
argument implies that for any p > 0,

[An(s; f)l = [An(k = s;:9)] = O([Im(s)[*) ([Im(s)| = o0)
on R(s) = f. By assumtion,
bo

k—s
is bounded on the domain 5 < R(s) < . Hence for any p > 0, we see by 4.3

[An(s; ) = O([Im(s)[™*) ([Im(s)] — oo)

holds unifomly on the domain § < R(s) < «. Furthermore we assume that o > k
and 3 < 0. Since (v Ny)~*An(s; f) has simple poles at s = 0 and s = k with residues
—ag and (v/Ny) " by, respectively, we can change the integral paths from R(s) =
to R(s) = S and obtain

Aw(sif)+= +

, 1 s -
i) = 5 [ (VR Al s + (V)
T Jw(s)=p
By the function equation,
, 1 s -
Fin) = 5 [ (VR Al = s s + (VR g

T JR(s)=5
1

=— (VNy)**An(s; g)ds + (VNy) b
270 J(s)=o-p

= (VNy)*g(—1/(iNy))
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Since f(z) and g(z) are holomorpic on H, we obtain
f(z) = (VNz/i) ™ g(~1/Nz),
9(z) = (=iV'Nz) " f(=1/N>)
0

Since I'(1) is generated by two elements T and S, we can easily characterize an
element f(z) of My(I'(1)) by the functional equation of L(s, f) and obtain an

Corollary 4.5. Let k be an even integer > 2, assume a holomorphic function f(z)
on H satisfies the condition. Then f(z) belongs to My (I'(1)) if and only if A(s; f) =
(2m)~*T'(s)L(s, f) can be analytically continued to the whole s-plane,
(—l)k/an

k—s
s holomorphic on H and bounded on any vertical strip and satisfies the functional
equation :

A(s;f)—i—%—i—

Als; f) = (=)"2A(k = s; ).
Moreover if ag = 0, then f(z) is a cusp form.

This part is based on [4] and [3]. I also used some proofs from the book [5].

REFERENCES

[1] Serre, J-P. (1973). A Course in Arithmetic. Springer.

[2] Murty, R. (2016). Problems in the Theory of Modular Forms. Hindustan Book Agency/ Springer.
[3] Bump, D. (1997). Automorphic Forms and Representations. Cambridge University Press.

[4] Miyake, T. (1989). Modular Forms. Springer.

[5] Diamond, F. & Shurman, J. (2005). A First Course in Modular Forms. Springer.

[6] Iwaniec, H. (1997). Topics in Classical Automorphic Forms. American Mathematical Society.



