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1. Motivation

We want to de�ne Hecke operators, which are linear maps, indexed by m ∈ N and
sending modular forms of a given weight k to modular forms of the same weight and
cusp forms to cusp forms:

Tm : Mk(SL(2,Z))→Mk(SL(2,Z)),

Tm : Sk(SL(2,Z))→ Sk(SL(2,Z)).

Hecke operators enable us to apply methods from linear algebra into the theory of
modular forms: Hecke operators are pairwise commuting and self-adjoint on Sk(SL(2,Z)),
where the hermitian form is taken to be the Petersson inner product. Hence by Spec-
tral Theorem we have the existence of an orthonormal basis of Sk(SL(2,Z)) consist-
ing of simultaneous eigenfunctions (called Hecke eigenforms) of all of the operators
Tm, m ∈ N.

2. Definition of Hecke Operators and their first properties

Fix m ∈ N and consider the space: Mm = {A ∈Mat(2,Z) | det A = m}. We have
an action of SL(2,Z) on Mm by left-multiplication:

SL(2,Z)×Mm →Mm.

Hence we have a decomposition of Mm into orbits. Hecke operators can be thought
of as averaging operators on the space of modular forms, where the sum is taken
over orbit representatives of the above action. Before de�ning the Hecke operators
we want to study the above action and give explicitly a set of orbit representatives
of the group action. This will be done in the following proposition:

Proposition 2.1. A set of orbit representatives of the above action is given by the
following matrices:

Mm
′ = {

(
a b
0 d

)
| ad = m, 0 ≤ b ≤ d− 1, d > 0}.

Moreover two di�erent elements of Mm
′ are inequivalent, meaning that each element

gives rise to a distinct orbit.

Proof. First we want to show that each element A ∈ Mm appears in some orbit.

Hence we want to �nd γ ∈ SL(2,Z) and

(
a b
0 d

)
∈Mm

′ such that γ−1A =

(
a b
0 d

)
.

First let A =

(
x1 x2
x3 x4

)
∈ Mm and set: a = (x1, x3), γ1 = x1

a
, γ3 = x3

a
. Hence

(γ1, γ3) = 1 and by lemma of Bézout we can �nd γ2, γ4 ∈ Z such that γ1γ4−γ2γ3 = 1.

Hence

(
γ1 γ2
γ3 γ4

)
∈ SL(2,Z). Now consider the following calculations:
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γ1 γ2
γ3 γ4

)−1(
x1 x2
x3 x4

)
=

(
γ4x1 − γ2x3 γ4x2 − γ2x4
γ1x3 − γ3x1 γ1x4 − γ3x2

)
=

(
a γ4x2 − γ2x4
0 γ1x4 − γ3x2

)
.

This follows from:
γ4x1 − γ2x3 = γ4γ1a− γ2γ3a = a(γ1γ4 − γ2γ3) = a.
γ1x3 − γ3x1 = γ1γ3a− γ3γ1a = 0.
Now set: b′ = γ4x2 − γ2x4, d = γ1x4 − γ3x2.

Hence we have γ−1A =

(
a b′

0 d

)
. We can ensure that d > 0 by multiplying from the

left by the matrix

(
−1 0
0 −1

)
. By the division algorithm we can also �nd b = b′−kd,

where k ∈ Z and 0 ≤ b ≤ d − 1 then we just multiply from the left by

(
1 −k
0 1

)
to obtain the matrix with the desired properties:

(
a b
0 d

)
. It remains to prove that

ad = m. This follows by simple calculations or by observing that γ′A =

(
a b
0 d

)
, for

some γ′ ∈ SL(2,Z) and that the determinant of A equals m.
Now we want to prove the second claim, namely that di�erent elemens inMm

′ give

di�erent orbits. Let

(
a b
0 d

)
,

(
a′ b′

0 d′

)
∈ Mm

′. Assume there is γ ∈ SL(2,Z) such

that

γ

(
a b
0 d

)
=

(
a′ b′

0 d′

)
.

This means that (
aγ1 bγ1 + dγ2
aγ3 aγ3 + dγ4

)
=

(
a′ b′

0 d′

)
.

This implies that γ3 = 0, but then since γ1γ4 = 1, we have that: γ1, γ4 = 1 or− 1.
Since d, d′ > 0, we have that γ1 = γ4 = 1. But then d = d′ and 0 ≤ b, b′ ≤ d − 1
implies that −d + 1 ≤ b − b′ ≤ d − 1. But b − b′ = dγ2. Hence γ2 = 0. Hence γ

is necessarily the identity matrix and

(
a b
0 d

)
=

(
a′ b′

0 d′

)
. The converse implication

proves the claim. �

Before de�ning the Hecke operators we need to recollect some de�nitions:

De�nition 2.2. Let γ =

(
a b
c d

)
∈ GL+

2 (R) and z ∈ H. De�ne j(γ, z) = cz + d.

Now let f : H→ C and an integer k �xed. De�ne the function1

f [γ]k : H→ C,

f [γ]k(z) = (det γ)k/2j(γ, z)−kf(γz).

This function has the following properties:

f [γ1γ2]k = f [γ1]k[γ2]k ∀γ1, γ2 ∈ GL+
2 (R),

f 7→ f [γ]k is a linear operator ∀γ ∈ GL+
2 (R).

1In literature one often �nds the following notation for this function: f|kγ.
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Remark 2.3. In general we cannot expect f [A]k to be a modular form for arbitrary
A ∈ GL+

2 (R) and f ∈ Mk(SL(2,Z)). Hecke operators (which will be de�ned below)
are special in that regard: By summing elements of the form f [A]k for a given modular
form f we indeed get back a modular form!

Now we are ready to de�ne the Hecke operators:

De�nition 2.4. Let m ∈ N. We de�ne the m-th Hecke operator Tm as follows:
For f ∈Mk(SL(2,Z)) let

(2.1) Tmf := mk/2−1
∑

A∈Mm/∼

f [A]k.

The sum is meant to be taken over arbitrary orbit representatives.2 After showing that
the above statement is well-de�ned, i.e independent of the choice of orbit represen-
tatives, we can insert our distinguished set of orbit representatives from proposition
2.1 to obtain:

Tmf = mk/2−1
∑
ad=m
d>0

d−1∑
b=0

f

[(
a b
0 d

)]
k

.

For z ∈ H we have:

Tmf(z) = mk−1
∑
ad=m
d>0

d−1∑
b=0

d−kf
(az + b

d

)
.

Lemma 2.5. The Hecke operators are well-de�ned, i.e the de�nition does not depend
on the choice of orbit representatives.

Proof. We want to show now that the Hecke operators are well-de�ned. For this let
N be the (�nite) number of orbits and Let {Ai | i = 1, . . . , N}, {A′i | i = 1, . . . , N}
be two arbitrary orbit representatives. Then up to reordering of the indices we have
that Ai = γiA

′
i for some γi ∈ SL(2,Z), i = 1, . . . , N. Then the claim follows directly

from the weak modularity of f :
N∑
i=1

f [Ai]k =
N∑
i=1

f [γiA
′
i]k =

N∑
i=1

f [γi]k[A
′
i]k =

N∑
i=1

f [A′i]k.

�

Theorem 2.6. Let m ∈ N, f ∈Mk(SL(2,Z)). Then Tmf : H→ C is
(i) holomorphic on H,
(ii) holomorphic at ∞,
(iii) weakly modular of weight k on SL(2,Z).
Hence Tmf ∈ Mk(SL(2,Z)) and Tm : Mk(SL(2,Z)) → Mk(SL(2,Z)) is a linear
operator on the space of modular forms of weight k.

Proof. The �rst claim is obviously true. The second claim will follow from the next
lemma, where we will discuss the action of Tm on the Fourier expansion of f ∈
Mk(SL(2,Z)). Let us prove the third claim. Given f ∈Mk(SL(2,Z)) we must show
that:

Tmf [γ]k = Tmf ∀γ ∈ SL(2,Z).

2This notation may seem ambiguous, since the elements in Mm/ ∼ are orbits. However this
should not lead to any confusion.
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Consider the following:

Tmf [γ]k =
(
mk/2−1

∑
A∈Mm/∼

f [A]k

)
[γ]k = mk/2−1

∑
A∈Mm/∼

f [Aγ]k = Tmf.

The second equality follows from known properties. The last equality follows from
the fact that {Aγ | A ∈Mm/ ∼} is another set of orbit representatives. �

To prove holomorphicity at ∞, we need to know how the Hecke operator acts on
the Fourier expansions of modular forms. For that let us consider the next lemma:

Lemma 2.7. Let f ∈Mk(SL(2,Z)) have the Fourier expansion:

f(z) =
∞∑
n=0

fne
2πinz.

Then the Fourier expansion of Tmf is given by the following formula:

Tmf(z) =
∞∑
n=0

( ∑
a|n,m

ak−1fmn
a2

)
e2πinz.

Hence Tmf is holomorphic at ∞.

Proof. We need the following easy result for the proof:

d−1∑
b=0

e2πinb/d =

{
d, if d | n
0, otherwise

.

Let f(z) =
∑∞

n=0 fne
2πinz be the Fourier expansion. Applying the Hecke operator we

obtain:

Tmf(z) = mk−1
∑
ad=m
d>0

d−1∑
b=0

d−k
∞∑
n=0

fne
2πinaz+b

d =
1

m

∑
ad=m
d>0

d−1∑
b=0

(m
d

)k ∞∑
n=0

fne
2πinaz

d e2πin
b
d

=
∑
ad=m
d>0

(m
d

)k−1 ∞∑
n=0
d|n

fne
2πinaz

d =
∑
ad=m
d>0

(m
d

)k−1 ∞∑
n=0

fnde
2πinaz

=
∑
a|m

ak−1
∞∑
n=0

fnm
a
e2πinaz =

∞∑
r=0

∑
a|m
a|r

ak−1f rm
a2
e2πirz.

�

Corollary 2.8. If f ∈ Sk(SL(2,Z)), then Tmf ∈ Sk(SL(2,Z)). Hence the Hecke
operators maps cusp forms to cusp forms and we have the restriction map:

Tm : Sk(SL(2,Z))→ Sk(SL(2,Z)).

The next goal is to show that the Hecke operators Tm form a commuting family of
endomorphisms on Mk(SL(2,Z)) and Sk(SL(2,Z)).

Lemma 2.9. If (m,n) = 1, then TmTn = Tmn = TnTm.
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Proof. Let f ∈ Mk(SL(2,Z)). Let f(z) =
∑∞

r=0 fre
2πirz be the Fourier expansion.

Consider the mn-th Hecke operator Tmn. It has the following Fourier expansion:

Tmnf(z) =
∞∑
r=0

( ∑
t|r,mn

tk−1f rmn
t2

)
e2πirz.

Now there is a bijection (exercise) between the tuples of divisors
{(a, b) | a|r, b|r, a|n b|m} and the divisors {t | t|r, t|mn} given by (a, b) 7→ ab. (Here
we use the �rst time that (n,m) = 1). Hence we can rewrite the above sum in the
following way:

Tmnf(z) =
∞∑
r=0

( ∑
ab|r,mn

ak−1bk−1f rmn
a2b2

)
e2πirz =

∞∑
r=0

(∑
b|r,m

∑
a|r,n

ak−1bk−1f rmn
a2b2

)
e2πirz.

Now consider the n-th Hecke operator Tn. It has the following Fourier expansion:

Tnf(z) =
∞∑
r=0

(∑
a|r,n

ak−1f rn
a2

)
e2πirz.

Now set f̃ = Tnf and apply the m-th Hecke operator. This gives:

Tm(Tnf)(z) = Tmf̃(z) =
∞∑
r=0

(∑
b|r,m

bk−1f̃ rm
b2

)
e2πirz.

Now notice that f̃k is the k-th Fourier-coe�cient of Tnf . Hence:

f̃ rm
b2

=
∑
a| rm
b2
,n

ak−1f rmn
b2a2

.

Now inserting the Fourier-coe�cient into the above sum we get:
∞∑
r=0

(∑
b|r,m

∑
a| rm
b2
,n

ak−1bk−1f rmn
a2b2

)
e2πirz.

But now consider the following:
a| rm

b2
implies that a|rm. By assumption a|n. Hence by using for the second time

that (n,m) = 1, we have that (a,m) = 1. Then a|rm implies that a|r. (This can be
proven by lemma of Bézout).
Hence the above sum simpli�es to:

∞∑
r=0

(∑
b|r,m

∑
a|r,n

ak−1bk−1f rmn
a2b2

)
e2πirz.

What we have shown is that for arbitrary f ∈ Mk(SL(2,Z)) it holds that TmTnf =
Tmnf . Now the claim follows easily from the commutativity of the natural numbers:

TmTn = Tmn = Tnm = TnTm.

�

Lemma 2.10. Let p be a prime number. Then we have the following:

∀r, s ∈ N : TprTps = TpsTpr .
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Proof. See for example: [2] or see [1] for a di�erent approach. �

Theorem 2.11. The Hecke operators commute:

∀m,n ∈ N : TmTn = TnTm.

Proof. Let m,n ∈ N. By prime factorization, put: n = pα1
1 . . . p

αj
j , m = qβ11 . . . qβkk .

Then:

TnTm = Tpα11
. . . T

p
αj
j
T
q
β1
1
. . . t

q
βk
k

.

Now, if pi = ql for some i, l, we can commute them by lemma 2.10. If they are not
equal, we can commute them by lemma 2.9. Hence the claim follows. �

We will state an important property of the Hecke operators on Sk(SL(2,Z)),
namely that they are self-adjoint w.r.t the Petersson inner product:

Theorem 2.12. The Hecke operators Tm : Sk(SL(2,Z)) → Sk(SL(2,Z)) are self-
adjoint w.r.t the Petersson inner product, i.e

〈Tmf, g〉 = 〈f, Tmg〉 ∀ f, g ∈ Sk(SL(2,Z)).

Proof. First one shows that the statement is true for Poincaré-series. Then one notices
that the Poincaré-series span Sk(SL(2,Z)) (last talk). See for example: [6], theorem
6.12. �

3. Dirichlet series associated to modular forms

Each modular form f ∈ Mk(SL(2,Z)) has an associated Dirichlet series, its L-
function. Let f(z) =

∑∞
n=0 a

ne2πinz be its Fourier expansion, let s ∈ C be a complex
variable, and write formally

L(s, f) =
∞∑
n=1

ann
−s.

Convergence of L(s, f) in a half plane of s-values follows from estimating the Fourier
coe�cents of f. Note that the Dirichlet series begains from 1.

Proposition 3.1. If f ∈ Mk(SL(2,Z))) is a cusp form then its fourier coe�cients
satisfy an = O(nk/2). If f is not a cusp form then its fourier coe�ents satisfy
an = O(nk).

Proof. let q = e2πiτ = e2πi(x+iy), let g(q) =
∑∞

n=1 anq
n, a holomorphic function on the

unit disk q : |q| < 1, then for any r ∈ (0, 1), we have

an =
1

2πi

∫
|q|=r

g(q)q−ndq/q =

∫ 1

x=0

f(x+ iy)e−2πin(x+iy)dx

for any y > 0, and letting y = 1/n

an = e2π
∫ 1

x=0

f(x+ i/n)e−2πinxdx

Since f is a cusp form, we know that it decays rapidly when it approaches the
cusp. Thus Im(τ)k/2|f(τ)| is bounded on the upper half plane, so estimating the last
integral, we kown that |an| ≤ Cnk/2, then we get the result.
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If Ek is an Eisenstein series in Mk(SL(2,Z)), its nth Fourier coe�cient of f is
σk−1(n), and

σk−1 =
∑
d|n

dk−1 =
∑
d|n

(
n

d
)k−1 = nk−1

∑
d|n

1

dk−1
< nk−1ζ(k − 1)

we have that |an| ≤ Cnk−1. Since every modular form is the sum of a cusp form and
an Eisenstein series, the rest follows. �

Corollary 3.2. if f ∈Mk(SL(2,Z)) is a cusp form then L(s, f) converges absultely
for all s with <(s) > k/2+1. If f is not a cusp form then L(s, f) converges absolutely
for all s with <(s) > k

Remark 3.3. Daniel Bump in [3] remarked that: The estimate |an| ≤ Cnk/2 called
the trival estimate, is due to Hardy (1927) and (more simply) Hecke (1937). The
correct estimate |an| ≤ Cn(k−1)/2+ε for any ε > 0 was conjectured (for f = ∆) by Ra-
manujan (1916); this famous statement, the Ramanujan conjecture, was �nally proved
around 1970 by Deligne(1971) using di�cult techniques from algebraic geometry.

In order to estimate the convergence of some integrals which we will use later, we
need the following lemma

Lemma 3.4. For a sequence {an}∞n=0 of complex numbers, for z ∈ H, put

(3.1) f(z) =
∞∑
n=0

ane
2πinz,

and an = O(nv) with some v > 0. Then the right-hand side of equation 3.1 convergent
absolutely and uniformly on any compact subset of H, and f(z) is holomorphic on H.
Moreover,

f(z) = O(Im(z)−v−1) (Im(z)→ 0)

f(z)− a0 = O(e−2π Im(z)) (Im(z)→∞)

uniformly on <(z)

Proof. By the formula

Γ(v + 1) = lim
n→∞

n!nv+1

(v + 1)(v + 2) . . . (v + n+ 1)
,

we have for v > 0,

lim
n→∞

nv/(−1)n
(
−v − 1

n

)
= Γ(v + 1),

And because an = O(nv), there exisits L > 0 such that

|an| ≤ L(−1)n
(
−v − 1

n

)
for all n ≥ 0. Put z = x+ iy, then we have

∞∑
n=0

|an||e2πinz| ≤ L(
∞∑
n=0

(−1)n
(
−v − 1

n

)
e−2πny)

= L(1− e−2πy)−v−1

Because (1 − e−2πy) = O(y) as y → 0, we see that |f(z)| = O(y−v−1), also we have
f(z) is bounded when y →∞.
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As f(z) − a0 = e2πinz(
∑∞

n=0 an+1e
2πinz), and

∑∞
n=0 an+1e

2πinz also satisfy the as-
sumption of the lemma, by the conclusion we just proved, it is bounded when y →∞.
Therefore, we have as y →∞

f(z)− a0 = e2πinz(
∞∑
n=0

an+1e
2πinz) = O(e−2πy)

�

Proposition 3.5. The L-function L(s, f) has meromorphic continuation to all s and
satis�es a functional equation. In fact, if

Λ(s, f) = (2π)−sΓ(s)L(s, f)

then Λ(s, f) extends to an analytic function of s if f is a cusp form; if it is not a
cusp form, then it has simple poles at s = 0 and s = k. In general, it satis�es

Λ(s, f) = (−1)k/2Λ(k − s, f)

Proof. By the lemma 3.4, we know that for t > 0 and <(s) > k + 1,
∑∞

n=1 ane
−2πnt

and
∑∞

n=1

∫∞
0
ant

se−2πntt−1dt converges absolutely.
For <(s) > k + 1, we have

Λ(s, f) = (2π)−sΓ(s)L(s, f)

=
∞∑
n=1

an(2πn)−s
∫ ∞
0

e−tts−1dt

=
∞∑
n=1

∫ ∞
0

ant
se−2πntt−1dt

=

∫ ∞
0

ts(
∞∑
n=1

ane
−2πnt)t−1dt

=

∫ ∞
0

ts(f(it)− a0)t−1dt

= −a0
s

+

∫ ∞
1

t−sf(i/t)t−1dt+

∫ ∞
1

ts(f(it)− a0)t−1dt

(3.2)

Because f is a modular form, we have f(it) = (−1)k/2t−kf(i/t), then

Λ(s; f) = −a0
s
− (−1)k/2a0

k − s
+(−1)k/2

∫ ∞
1

tk−s(f(it)−a0)t−1dt+
∫ ∞
1

ts(f(it)−a0)t−1dt

By the lemma 3.4, we have

f(it)− a0 = O(e−2πt),

so that ∫ ∞
1

tk−s(f(it)− a0)t−1dt

and ∫ ∞
1

ts(f(it)− a0)t−1dt

converges absolutely and uniformly on any vertical strip. Therefore they are holo-
morphic on the whole s-plane. If we de�ne Λ(s, f) for any s ∈ C by the integral,
it is then a meromorphic function on the whole s-plane. The functional equation
follows. �
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Now we consider the Euler property of the L-function.
As Daniel Bump remarks in the [3]: the �rst historical hint that a Euler product

should be associated with the L-series of a modular form came from Ramanujan's
investigation of ∆. The Fourier coe�cients of ∆ comprise Ramanujan's tau function:
∆(z) =

∑
τ(n)qn. Ramanujan (1916) conjectured, and Mordell (1917) proved shortly

afterward, that
∞∑
n=1

τ(n)n−s =
∏
p

(1− τ(p)p−s + p11−2s)−1.

The true explanation of this identity requires the theory of Hecke operators.
The Hecke algebra is a commutative family of self-adjoint operators on the �nite-

dimensional vector space Sk(SL2(Z)), by the spectral theorem, we konw there exists
a basis of functions which are eigenfunction of all the Hecke operators. We call them
the Hecke eigenform.
We will show that these eigenforms has the property of Euler product. And also it is

interesting to notice that after some normalization. We can �nd that the eigenvalues
of the Hecke operator are hidden in the Fourier coe�ents of the so called normalized
Hecke eigenform.

Proposition 3.6. Now we suppose that f is a Hecke eigenform. Let fn denotes its
Fourier coe�cients. Then fn satisfy the following:

(1) f1 6= 0
(2) if f1 = 1, then λ(n) = fn for all n
(3) if f1 = 1 then the coe�ents fn are multiplicative; that is, if (m,n) = 1, we

have fmn = fmfn

Proof. By lemma 2.7 , we have that

(3.3) λ(n)fm =
∑

a|n,a|m

ak−1fmn
a2

Suppose that (m,n) = 1. Then the only a that divides both m and n is a = 1, so it
reduces to

(3.4) λ(n)fm = fnm

Taking m = 1, this implies that fn = λ(n)f1, then we get the conclusion. �

Thus we can adjust the coe�ent of the Hecke eigenform by making f1 = 1, such a
Hecke eigenform will be called normalized.

Theorem 3.7. If f is a normalized Hecke eigenform, then

(3.5) L(s, f) =
∑
n≥1

fnn
−s =

∏
p

(1− fpp−s + pk−1−2s)−1

Proof. Because the coe�ents of f is multiplicative, then we have

L(s, f) =
∑
n≥1

fnn
−s =

∏
p

(
∞∑
r=0

fprp
−rs)

In order to prove equation 3.5, we only need the equity

(1− fpp−s + pk−1−2s)(
∞∑
r=0

fprp
−rs) = 1
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To prove this, �rst observe that by lemma 2.7, we have

λ(n)fm =
∑

a|n,a|m

ak−1fmn
a2

by taking m = pr, n = p, then we have

fpr+1 − fpfpr + pk−1fpr−1 = 0

Multipling by Xr+1, and summing this equation for r ≥ 1, we have∑
r≥1

fpr+1Xr+1 −
∑
r≥1

(fpX)(fprX
r) +

∑
r≥1

(pk−1X2)(fpr−1Xr−1) = 0

by adding the corresponding term, we have∑
r≥0

fprX
r −

∑
r≥0

(fpX)(fprX
r) +

∑
r≥0

(pk−1X2)(fprX
r) = 1

that is

(1− fpX + pk−1X2)(
∞∑
r=0

fprX
r) = 1

taking X = p−s, we get the Euler product.
�

This section is based on [3] and [5].

4. Hecke's converse theorem

We �rst write the following condition for conveience to quote later.

Condition 4.1. let f(z) be a function on H, f(z) has a fourier expansion

f(z) =
∞∑
n=0

ane
2πinz,

which converges absolutely and uniformly on any compact subset of H. And there
exists v > 0 such that:

f(z) = O(Im(z)−v), (Im(z)→ 0),

uniformly on <(z).

If f is holomorphic on H, satis�es the condition 4.1, then by a similar proof as
propostion 3.1, we have that an = O(nv).

Remark 4.2. By the above lemma 3.4, all holomorphic functions f(z) onH satisfying
the condition 4.1 correspond bijectively to all sequences {an}∞n=1 of complex numbers
such that an = O(nv) with v > 0.

Theorem 4.3 (Phragmen-Lindelöf). For two real numbers v1, v2 v1 < v2, put

F = {s ∈ C|v1 ≤ <(s) ≤ v2}.
Let φ be a holomorphic function on a domain contating F satisfying

|φ(s)| = O(e|τ |
δ

) (|τ | → ∞), s = σ + iτ

uniformly on F with δ > 0. For real number b, if on <(s) = v1 and <(s) = v2,

|φ(s)| = O(|τ |δ) (|τ | → ∞)
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then uniformly on F, we have:

|φ(s)| = O(|τ |δ) (|τ | → ∞)

Proof. By assumption, there exists L > 0 such that |φ(s)| ≤ Le|τ |
δ
. First consider

the case when b = 0. Then there exist M > 0, such that |φ(s)| ≤ M on the lines
<(s) = v1 and <(s) = v2. Let m be a positive integer such that m ≡ 2 mod 4. Put
s = σ + iτ. Since <(sm) = <((σ + iτ)m) is a polynomial of σ and τ, and the highest
term of τ is −τm, we have

<(sm) = −τm +O(|τ |m−1) (|τ | → ∞),

uniformly on F , so that <(sm) has an upper bound on F . Taking m and N so that
m > δ and <(sm) ≤ N, we have, for any ε > 0, on <(s) = v1 and <(s) = v2,

|φ(s)eεs
m| ≤MeεN ,

and
|φ(s)eεs

m| = O(e|τ |
δ−ετm+K|τ |m−1

)→ 0, (|τ | → ∞)

uniformyly on F. By the maximum principle, we see

|φ(s)eεs
m| ≤MeεN , (s ∈ F )

Letting ε → 0, we obtain that |φ(s)| ≤ M, namely, φ(s) = O(|τ |0). Next assume
b 6= 0. We de�ne a holomorpic function:

ψ(s) = (s− v1 + 1)b = eb log(s−v1+1),

where log takes the principal value. Since

<(log(s− v1 + 1) = log(|s− v1 + 1|),
we have uniformly on F

|ψ(s)| = |s− v1 + 1|b ∼ |τ |b (|τ | → ∞)

Put φ1(s) = φ(s)/ψ(s). Then φ1(s) satis�es the same condition as φ with b = 0, so
that by the above result, φ1(s) is bounded on F , thus we get the result for arbitrary
b.

�

For a holomorphic function f(z) =
∑∞

n=0 ane
2πinz on H satisfying condition 4.1,

we put L(s, f) =
∑∞

n=1 ann
−s, since an = O(nv), L(s, f) converges absolutely and

uniformly on any compact subset of <(s) > 1 + v, so that it is holomorphic on
<(s) > 1 + v. We call L(s, f) the Dirichlet series associated with f. For N > 0, we

put ΛN(s; f) = (2π/
√
N)−sΓ(s)L(s, f)

Theorem 4.4. Let f(z) =
∑∞

n=0 ane
2πinz and g(z) =

∑∞
n=0 bne

2πinz be holomorphic
funtions satisfying the condition 4.1. For positive k and N, the following condition
(1) and (2) are equivalent.

(1) g(z) = (−i
√
Nz)−kf(−1/Nz)

(2) Both ΛN(s; f) and ΛN(s; g) can be analytically continued to the whole s-plane,
satisfy the functional equation

ΛN(s; f) = ΛN(k − s; g),

and

ΛN(s; f) +
a0
s

+
b0

k − s
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is holomorphic on the whole s-plane and bounded on any vertical strip σ1 ≤
<(s) ≤ σ2.

Proof. From (1)⇒ (2): similar to the proof of proposition 3.5.
From (2)⇒(1) By the Mellin inversion formular: For σ > 0,

e−t =
1

2πi

∫
<(s)=σ

Γ(s)t−sds,

let t = 2πny, we have

f(iy) =
1

2πi

∞∑
n=1

an

∫
<(s)=α

(2πny)−sΓ(s)ds+ a0

for any α > 0. If α > v + 1, then L(s, f) =
∑∞

n=1 ann
−s is uniformly convergent and

bounded on Re(s) = α, so that by the Stirling's estimate

Γ(s) ∼
√

2πτσ−1/2e−π|τ |/2, (s = σ + iτ, |τ | → ∞),

ΛN(s; f) = (2π/
√
N)−sΓ(s)L(s; f) is absolutely integrable. Therefore we can ex-

change the order of summation and integration, and

f(iy) =
1

2πi

∫
<(s)=α

(
√
Ny)−sΛN(s; f)ds+ a0.

Since L(s; f) is bounded on <(s) = α, we see, for any µ > 0,

|ΛN(s; f)| = O(|Im(s)|−µ) (|Im(s)| → ∞)

on <(s) = α by Stirling's estimate. Next take β so that k − β > v + 1. A similar
argument implies that for any µ > 0,

|ΛN(s; f)| = |ΛN(k − s; g)| = O(|Im(s)|−µ) (|Im(s)| → ∞)

on <(s) = β. By assumtion,

ΛN(s; f) +
a0
s

+
b0

k − s
is bounded on the domain β ≤ <(s) ≤ α. Hence for any µ > 0, we see by 4.3

|ΛN(s; f)| = O(|Im(s)|−µ) (|Im(s)| → ∞)

holds unifomly on the domain β ≤ <(s) ≤ α. Furthermore we assume that α > k

and β < 0. Since (
√
Ny)−sΛN(s; f) has simple poles at s = 0 and s = k with residues

−a0 and (
√
Ny)−kb0, respectively, we can change the integral paths from <(s) = α

to <(s) = β and obtain

f(iy) =
1

2πi

∫
<(s)=β

(
√
Ny)−sΛN(s; f)ds+ (

√
Ny)−kb0.

By the function equation,

f(iy) =
1

2πi

∫
<(s)=β

(
√
Ny)−sΛN(k − s; g)ds+ (

√
Ny)−kb0

=
1

2πi

∫
<(s)=k−β

(
√
Ny)s−kΛN(s; g)ds+ (

√
Ny)−kb0

= (
√
Ny)−kg(−1/(iNy))
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Since f(z) and g(z) are holomorpic on H, we obtain

f(z) = (
√
Nz/i)−kg(−1/Nz),

g(z) = (−i
√
Nz)−kf(−1/Nz)

�

Since Γ(1) is generated by two elements T and S, we can easily characterize an
element f(z) ofMk(Γ(1)) by the functional equation of L(s, f) and obtain an

Corollary 4.5. Let k be an even integer ≥ 2, assume a holomorphic function f(z)
on H satis�es the condition. Then f(z) belongs toMk(Γ(1)) if and only if Λ(s; f) =
(2π)−sΓ(s)L(s, f) can be analytically continued to the whole s-plane,

Λ(s; f) +
a0
s

+
(−1)k/2a0
k − s

is holomorphic on H and bounded on any vertical strip and satis�es the functional
equation :

Λ(s; f) = (−1)k/2Λ(k − s; f).

Moreover if a0 = 0, then f(z) is a cusp form.

This part is based on [4] and [3]. I also used some proofs from the book [5].
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