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The point of this talk will be to present an another type of form, so-called
Maass form, and an example of such forms, the non-holomorphic Eisenstein se-
ries.

The reason to study some other functions than modular forms is that the
condition of holomorphicity is very restrictive - for instance we have seen that
there is no nontrivial weight 0 (or automorphic) modular forms. We want to
somehow relax this condition; for example we could require real analytic func-
tions rather than complex analytic ones. At this point, we ask to ourselves : how
can we generate analytic functions ? A way to answer this question is for exam-
ple to define an elliptic operator; its eigenvectors will be analytic functions. In
particular, to get automorphicity, we would like to study an SL(2,Z)-invariant
operator. This desired operator will be the hyperbolic Laplace operator, which
is defined as

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Then we will define Maass forms, which are automorphic forms which are eigen-
vectors of the hyperbolic Laplace operator and are of moderate growth.

Historically, Maass forms were defined in 1949 by Hans Maass, to generalise
a construction of Hecke’s which associated to imaginary quadratic fields a theta
function from which one could recover the field’s Dedekind zeta function. Maass
wanted to find an equivalent for real quadratic fields, and these functions were
naturally eigenfunctions of the hyperbolic Laplace operator, of moderate growth,
and invariant under the action of the congruence subgroup Γ(D).

Secondly, we would like to find an example of Maass form. The most obvious
eigenvector of the Laplace operator is simply ys for s ∈ C. Now, to obtain an
automorphic form, we average it over SL(2,Z), we obtain the following series :

E(z, s) = π−s Γ(s)
1

2

∑
(m,n)∈Z2\(0,0)

ys

|mz + n|2s
.

This series is the non-holomorphic Eisenstein series.

1



1 Maass forms

Let’s start by defining the hyperbolic Laplace operator.

Definition 1.1. The (weight 0) hyperbolic Laplace operator onH is defined
as :

∆ : C∞(H)→ C∞(H)

∆ := −y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Definition 1.2. A singular Maass form for SL(2,Z) is a smooth function f
on H which satisfies the following two conditions :

1. f is automorphic, i.e. f(γz) = f(z) ∀γ ∈ SL(2,Z),

2. f is an eigenvector of the hyperbolic Laplace operator ∆, i.e. ∆f = λf
for some λ ∈ C.

Definition 1.3. A weak Maass form for SL(2,Z) is a singular Maass form
f which has the additional property of growing exponentially, i.e. there exists
a constant C > 0 such that

f(z) = O(eCy) as y = Im(z)→∞.

Definition 1.4. A Maass form for SL(2,Z) is a singular Maass form f which
has the additional property of growing polynomially, i.e. there exists a constant
C > 0 such that

f(z) = O(yC) as y = Im(z)→∞.

Now observe that the action of SL(2,Z) on H induces a natural action of
SL(2,Z) on C∞(H), that is, for all γ ∈ SL(2,Z) there exists a homomorphism
θγ defined by :

θγ : C∞(H)→ C∞(H)

f 7→ γ · f,

where (γ · f)(z) = f(γ · z).

Lemma 1.5. The hyperbolic Laplace operator ∆ on H is SL(2,Z)-invariant.

The proof of the following lemma is principally technical calculations, where
the tricks are to use the Cauchy-Riemann equations and the chain-rule. This
lemma will become important in the second part of this talk to show that the
non-holomorphic Eisenstein series is automorphic.

Proof. Let γ ∈ SL(2,Z). We have to show that

θγ ◦∆ = ∆ ◦ θγ ,
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where θγ has been defined before stating this lemma.

In other words, let f ∈ C∞(H) and z = x+ iy ∈ C, we have to show that

∆(f)(γ(z)) = ∆(f ◦ γ)(z).

Set γ(z) = γ(x, y) = u(x, y) + iv(x, y). We will use simpler notations for
partial derivatives in this proof to make this calculations more readable, e.g. fu
instead of ∂

∂uf .

On the left hand side of the equation, we have :

∆(f)(γ(z)) = −v2 (fuu(u, v) + fvv(u, v)) .

On the right hand side of the equation, we obtain :

∆(f ◦ γ) = −y2

(
∂2

∂x2
f(u, v) +

∂2

∂y2
f(u, v)

)
= −y2

(
∂

∂x
(fu(u, v)ux + fv(u, v)vx)

∂

∂y
(fu(u, v)uy + fv(u, v)vy)

)
= −y2

(
(fuuux + fvuvx)ux + fuuxx + (fvuux + fvvvx)vx + fvvxx

+ (fuuuy + fvuvy)uy + fuuyy + (fvuuy + fvvvy)vy + fvvyy

)
.

Now, observe that γ(x, y) is holomorphic, thus it satisfies the Cauchy-Riemann
equations, that is :

ux = vy and uy = −vx
and this implies also that uxx + uyy = 0. Using these equations in the previous
calculations, we obtain :

∆(f ◦ γ) = −y2(u2
x + v2

x)(fuu(u, v) + fvv(u, v))

= −y2

∣∣∣∣ ddz γ(z)

∣∣∣∣2(fuu(u, v) + fvv(u, v))

We are reduced to showing that

−y2

∣∣∣∣ ddz γ(z)

∣∣∣∣2 = −v2.

Suppose that γ =

(
a b
c d

)
, with a, b, c, d ∈ Z such that ad− bc = 1. Observe

that, as it has been shown in talk 1,

v(x, y) =
y

|cz + d|2
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Then

−y2

∣∣∣∣ ddz γ(z)

∣∣∣∣2 = −y2|vy + ivx|2

= −y2

( |cz + d|2 − 2c2y2

|cz + d|4

)2

+

(
2cy(cx+ d)

|cz + d|4

)2


= − y2

|cz + d|4

= −v2.

2 The non-holomorphic Eisenstein series and its
first properties

We first define the non-holomorphic Eisenstein series for SL(2,C). The aim
of this section will be to show that this series is a singular Maass form. In fact,
it is a Maass form; the polynomial growth condition will be shown in the third
section.

Definition 2.1. Let z = x + iy ∈ H and s ∈ C. The non-holomorphic
Eisenstein series for SL(2,C) is defined as

E(z, s) = π−s Γ(s)
1

2

∑
(m,n)∈Z2\{(0,0)}

ys

|mz + n|2s

where Γ is the Gamma function which is defined by

Γ(s) =

∫ ∞
0

ts−1e−tdt.

This function, unlike the Eisenstein series Gk defined in previous talks for
integer k, is not holomorphic, since the complex modulus function isn’t.

Lemma 2.2. The series E(z, s) converges absolutely if Re(s) > 1.

Proof. The convergence boils down to the convergence of the series∑
(m,n)∈Z2\{(0,0)}

1

|mz + n|2s

since the rest is constant in z. One can simply apply the proof given by Aurel and
Etienne for absolute convergence on compact sets of their Eisenstein series.
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Theorem 2.3. The non-holomorphic Eisenstein series E(z, s) is automorphic,
that is

E(γ(z), s) = E(z, s) ∀γ ∈ SL(2,Z).

To prove this property of the non-holomorphic Eisenstein series, we will
first show that it can be written in a different form. First, recall the following
particular congruence subgroups :

Γ(1) = SL(2,Z) and Γ∞ =

{(
1 n
0 1

) ∣∣∣∣ n ∈ Z
}
.

and the Riemann zeta function defined by

ζ(s) =

∞∑
n=1

1

ns
.

Lemma 2.4. We have a bijection of sets :{
(c, d) ∈ Z2 coprimes

}
↔ {γ ∈ Γ∞ \ Γ(1)}

(c, d) ↔ γ with (c, d) as bottom row

Proof. The fact that the bottom row of an element of SL(2,Z) has to be formed
of coprime integers comes from the Bezout identity.

The point is to show that two elements

(
a b
c d

)
,

(
e f
g h

)
are equivalent in

Γ∞ \ Γ(1) if and only if they have the same bottom row.(
a b
c d

)
,

(
e f
g h

)
are equivalent in Γ∞ \ Γ(1)

⇔ ∃
(

1 n
0 1

)
∈ Γ∞ such that

(
1 n
0 1

)(
a b
c d

)
=

(
e f
g h

)

⇔ ∃n ∈ Z such that


a+ nc = e

b+ nd = f

c = g

h = d

.

Thus, if two elements in Γ∞ \ Γ(1), they have the same bottom row. On

the other hand, if two elements

(
a b
c d

)
,

(
e f
c d

)
in Γ∞ \ Γ(1) have the same

bottom row, we are reduced to showing that there exists some n ∈ Z such that{
a+ nc = e

b+ nd = f
. We suppose that d and c are non zero, since the other case uses

the same kind of arguments. Using the fact that the determinant of matrices in
Γ(1) is 1, we have the following equalities :{

ad− bc = 1

ed− fc = 1
⇒ (e− a)d = (f − b)c
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By the Bezout identity, d and c are coprime, thus d divides f − b and c
divides e− a, and we choose n := (f − b)/d = (e− a)/c ∈ Z.

Lemma 2.5. E(z, s) = π−sΓ(s)ζ(2s) 1
2

∑
γ∈Γ∞\Γ(1)

Im(γ(z))s.

Proof. Let’s begin this proof by showing the following identity

Im(z)s

|mz + n|2s
= N−2sIm(γ(z))s (1)

with γ =

(
a b
c d

)
and (c, d) a pair of coprime integers such that there exists

some positive integer N which satisfies (m,n) = (Nc,Nd).

Im(γ(z))s =
Im(z)s

|cz + d|2s

=
Im(z)s

|N−1mz +N−1n|2s

= N2s Im(z)s

|mz + n|2s
.

Now, observe that the following two sets are equal :

{
(m,n) ∈ Z2 \ {(0, 0)}

}
=

{
(m,n) ∈ Z2

∣∣∣∣ ∃c, d coprime in Z,∃N ∈ N
such that (m,n) = (Nc,Nd)

}
.

In other words, we have the identity :∑
(m,n)∈Z2\{(0,0)}

=

∑
N∈N

∑
(c,d)∈Z2

coprime

.

Now, consider the group Γ∞ \ Γ(1). Using the previous lemma, we under-
stand that summing over all pairs of coprime integers is the same as summing
over the elements of the right coset Γ∞ \ Γ(1).
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Thus we have, by using (1) :

E(z, s) = π−s Γ(s)
1

2

∑
(m,n)∈Z2\{(0,0)}

ys

|mz + n|2s

= π−s Γ(s)
1

2

∑
N∈N

∑
γ∈Γ∞\Γ(1)

N−2sIm(γ(z))s

= π−s Γ(s)
1

2

∑
N∈N

N−2s


 ∑
γ∈Γ∞\Γ(1)

Im(γ(z))s


= π−s Γ(s) ζ(2s)

1

2

∑
γ∈Γ∞\Γ(1)

Im(γ(z))s

Now we are ready to prove the automorphicity of the non-holomorphic Eisen-
stein series :

Proof of theorem 2.3. Using the previous lemma, we have :

E(τ(z), s) = π−sΓ(s)ζ(2s)
1

2

∑
γ∈Γ∞\Γ(1)

Im(γτ(z))s

= π−sΓ(s)ζ(2s)
1

2

∑
σ∈Γ∞\Γ(1)

Im(σ(z))s

= E(z, s).

We have applied a change of variables σ = γτ at the second line.

Theorem 2.6. The non-holomorphic Eisenstein series is an eigenvector of the
hyperbolic Laplace operator ∆ with eigenvalue s(1− s).

Proof. First, let’s prove that for all z = x+ iy ∈ H,

∆(Im(z))s = s(1− s)Im(z)s.

This is a direct calculation :

∆(Im(z))s = −y2

(
∂2

∂x2
+

∂2

∂y2

)
ys

= −ys
(
∂2

∂y2
(ys)

)
= (−ys)s(s− 1)ys−2

= s(1− s)Im(z)s.
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Now recall by lemma 1.5 that the hyperbolic Laplace operator is SL(2,Z)-
invariant, then

∆(Im(γ(z)))s = θγ∆(Im(z))s,

where θγ was defined in the first section by

θγ : C∞(H)→ C∞(H)

f 7→ γ · f,

where (γ · f)(z) = f(γ · z).

Using this two identities, we can prove that the Eisenstein series is an eigen-
vector of ∆, using the appropriate form of E(z, s) that we have found in lemma
2.4 and the fact that ∆ is linear:

∆E(z, s) = π−sΓ(s)ζ(2s)
1

2

∑
γ∈Γ∞\Γ(1)

∆(Im(γ(z)))s

= π−sΓ(s)ζ(2s)
1

2

∑
γ∈Γ∞\Γ(1)

θγ∆(Im(z))s

= π−2Γ(s)ζ(2s)
1

2

∑
γ∈Γ∞\Γ(1)

s(1− s)θγ(Im(z))s

= s(1− s)π−sΓ(s)ζ(2s)
1

2

∑
γ∈Γ∞\Γ(1)

Im(γ(z))s

= s(1− s)E(z, s).

Proposition 2.7. The non-holomorphic Eisenstein series E(z, s) is a singular
Maass form.

Proof. This follows directly from theorem 2.3 and theorem 2.5.

3 The meromorphic continuation

The aim of this section will be to prove that the non-holomorphic Eisenstein
series can be meromorphically continued to all of C, with simple poles at s = 0
and s = 1.

To this aim, we will calculate the Fourier expansion for the series, and observe
that all terms in the expansion can be adequately continued; we then conclude
with the identity theorem.

This will also give us a functional equation for the non-holomorphic Eisen-
stein series, namely E(z, s) = E(z, 1− s).
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3.1 The K-Bessel function

This section introduces an auxiliary function which we will then use in cal-
culating of the Fourier expansion for the non-holomorphic Eisenstein series.

Definition 3.1. The K-Bessel function Ks(y) is defined, for y > 0, s ∈ C, by

Ks(y) =
1

2

∫ ∞
0

e−y(t+t−1)/2ts
dt

t
.

The function is also known as the Macdonald Bessel function.

One can already note that the integrand decays rapidly as t→ 0 or t→∞
since y > 0, so the function is well-defined for all values of s.

Lemma 3.2. The K-Bessel function is even in s, that is

Ks(y) = K−s(y).

Proof. The measure dt
t is invariant under t 7→ t−1. Hence,

Ks(y) =
1

2

∫ ∞
0

e−y(t+t−1)/2ts
dt

t
=

1

2

∫ ∞
0

e−y(t−1+t)/2t−s
dt

t
= K−s(y).

Lemma 3.3. If y > 4, we have

|Ks(y)| ≤ e−y/2KRe(s)(2). (2)

Proof. If a, b are both greater than 2, then ab > a+ b; hence e−ab < e−(a+b) =
e−ae−b. Apply this with a = y/2, b = t+ t−1 and get

e−y(t+t−1)/2 ≤ e−y/2e−(t+t−1). (3)

Multiplying (3) by tRe(s) and integrating with respect to t, one gets

|Ks(y)| =
∣∣∣∣12
∫ ∞

0

e−y(t+t−1)/2ts
dt

t

∣∣∣∣ ≤ 1

2

∫ ∞
0

∣∣∣e−y(t+t−1)/2ts
∣∣∣dt
t

≤ 1

2

∫ ∞
0

∣∣∣e−y/2e−(t+t−1)
∣∣∣tRe(s) dt

t
= e−y/2KRe(s)(2).

Lemma 3.4. When s = 1/2, we have

K 1
2
(y) =

√
π

2y
e−y. (4)
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Proof. Indeed we have

K 1
2
(y) =

1

2

∫ ∞
0

e−y(t+t−1)/2t1/2
dt

t

=
1

2
√
y

∫ ∞
0

e−(t+y/t)/2t1/2
dt

t
.

Here we have used the change of variables t 7→ t
y and the fact that the measure

dt
t is invariant under multiplication (we will use such arguments again in the

course of the following proofs). We can then define

h(y) :=
√
yK 1

2
(y) =

1

2

∫ ∞
0

e−(t+y/t)/2t1/2
dt

t
.

Differentiating under the integral gives us

h′(y) = −y
2

∫ ∞
0

e−(t+y2/t)/2t−1/2 dt

t

= −y
2

∫ ∞
0

e−(t−1+y2t)/2t1/2
dt

t

= −1

2

∫ ∞
0

e−(t+y/t)/2t1/2
dt

t
= −h(y).

The second equality comes from dt
t being invariant under t 7→ t−1, the second

from the change of variables t 7→ t/y2. Hence

h′(y) = −h(y)⇒ h(y) = Ce−y

and we can find C by calculating h(0).

C =
1

2

∫ ∞
0

e−t/2t1/2
dt

t
=

1√
2

∫ ∞
0

e−tt1/2
dt

t
=

1√
2

Γ

(
1

2

)
=

√
π√
2
,

using the substitution t 7→ 2t. Hence

h(y) =

√
π

2
e−y ⇒ K 1

2
(y) =

√
π

2y
e−y.

Proposition 3.5. If Re(s) > 1/2 and r is real, then( y
π

)s
Γ(s)

∫ ∞
−∞

(x2 + y2)−se2πirxdx

=

{
π−s+1/2Γ(s− 1

2 )y1−s if r = 0

2|r|s−1/2√
yKs−1/2(2π|r|y) if r 6= 0

. (5)
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Proof. Recall the definition of the Gamma function

Γ(s) =

∫ ∞
0

ts−1e−tdt.

We can thus write the left side of (5) as∫ ∞
−∞

∫ ∞
0

e−t
(

ty

π(x2 + y2)

)s
e2πirx dt

t
dx.

Since Re(s) > 1
2 , the integral converges absolutely, so we can use Fubini’s the-

orem. Secondly, using the change of variables t 7→ ty
π(x2+y2) (recall the measure

dt/t is multiplicatively invariant), we then change the above to∫ ∞
0

∫ ∞
−∞

e−πt(x
2+y2)/ytse2πirxdx

dt

t
. (6)

We then use that the Fourier transform of a Gaussian function f(x) = e−ax
2

is

f̂(y) =
√

π
a e
−π2y2/a to say∫ ∞

−∞
e−tπx

2/ye2πirxdx =

{√
y
t if r = 0√
y
t e
−yπr2/t if r 6= 0

(we are evaluating the Fourier transform at r). Plugging this back into (6), we
get ∫ ∞

0

∫ ∞
−∞

e−πt(x
2+y2)/ytse2πirxdx

dt

t
=

∫ ∞
0

√
y

t
tse−πty

dt

t

=
√
y

1

πy

∫ ∞
0

√
πy

t

(
t

πy

)s−1

e−tdt

= π−sy−sπ1/2y

∫ ∞
0

ts−3/2e−tdt

= π−s+1/2y1−sΓ(s− 1/2)

when r = 0, and∫ ∞
0

∫ ∞
−∞

e−πt(x
2+y2)/ytse2πirxdx

dt

t
=

∫ ∞
0

√
y

t
e−yπr

2/ttse−πty
dt

t

=
√
y

∫ ∞
0

ts−1/2|r|s−1/2
e−πy(|r|/t+|r|t) dt

t

= |r|s−1/2√
y

∫ ∞
0

ts−1/2e−πy|r|(t+t
−1) dt

t

= 2|r|s−1/2√
yKs−1/2(2π|r|y)

when r 6= 0, using the change of variables t 7→ t
|r| .
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3.2 The Fourier expansion of the series

Since the non-holomorphic Eisenstein series is fully automorphic, in partic-

ular with T =

(
1 1
0 1

)
, we have

E(z + 1, s) = E(Tz, s) = E(z, s).

Hence we have a Fourier expansion

E(z, s) =

∞∑
r=−∞

ar(y, s)e
2πirx

with

ar(y, s) =

∫ 1

0

E(x+ iy, s)e−2πirxdx. (7)

Our task now is to calculate these Fourier coefficients, and we will be able to
get the meromorphic continuation.

Proposition 3.6. The Fourier coefficients of the non-holomorphic Eisenstein
series E(z, s) are

a0 = π−s Γ(s) ζ(2s) ys + πs−1ζ(2− 2s)Γ(1− s)y1−s (8)

ar = 2|r|s−1/2
σ1−2s(|r|)

√
yKs−1/2(2π|r|y), (9)

where
σ1−2s(r) =

∑
m|r

m1−2s.

Proof. Expanding out the definition (7) of the coefficients, we get

ar(y, s) =

∫ 1

0

π−s Γ(s)
1

2

∑
(m,n)∈Z2\(0,0)

ys

|mx+miy + n|2s
e−2πirxdx.

Since both sum and integral converge absolutely, we can manipulate them. First
we look at those terms in the sum with m = 0. Since in this case the above
integral does not depend on x, these terms can only contribute to the Fourier
coefficient a0; call this contribution a′′0 Indeed the integral becomes

a′′0 =
1

2

∫ 1

0

π−s Γ(s)

∑
n∈Z\{0}

ys

|n|2s
dx = π−s Γ(s) ζ(2s) ys.

Now we consider the terms with m 6= 0. Since m 6= 0 implies (m,n) 6= (0, 0),
we need no restrictions on n. Their contribution (which we may write a′r(y, s),

12



and note ar = a′r whenever r 6= 0, a0 = a′0 +a′′0 = a′0 +π−sΓ(s)ζ(2s)ys) is thus:

a′−r(y, s) =

∫ 1

0

π−s Γ(s)
1

2

∑
m∈Z\{0}

∑
n∈Z

ys

|mx+miy + n|2s
e2πirxdx

= π−s Γ(s)

∞∑
m=1

∞∑
n=−∞

∫ 1

0

ys

|mx+miy + n|2s
e2πirxdx

= π−s Γ(s) ys

∞∑
m=1

∞∑
n=−∞

∫ 1

0

1

((mx+ n)2 + (my)2)s
e2πirxdx

= π−s Γ(s) ys

∞∑
m=1

∞∑
k=−∞

(k+1)m∑
n=km

∫ 1

0

1

((mx+ n)2 + (my)2)s
e2πirxdx

= π−s Γ(s) ys

∞∑
m=1

∑
n mod m

∫ ∞
−∞

1

((mx+ n)2 + (my)2)s
e2πirxdx.

The second equality comes from the fact (m,n) and (−m,−n) contribute equally
to the sum, the third from the definition of a complex modulus, while the fourth
and fifth are simply set equalities and the fact that the integrand is periodic.
Now we use the linear substitution x 7→ x+ n/m, and since(

x+
n

m

)2

= x2 +
2nx

m
+
n2

m2
=

(mx+ n)2

m2
,

we have transformed our integral to

π−s Γ(s) ys

∞∑
m=1

∑
n mod m

e2πirn/m

∫ ∞
−∞

1

(m2x2 +m2y2)s
e2πirxdx

= π−s Γ(s) ys

∞∑
m=1

m−2s

∑
n mod m

e2πirn/m

∫ ∞
−∞

1

(x2 + y2)s
e2πirxdx.

Now consider ∑
n mod m

e2πirn/m =

{
m if m|r
0 otherwise

and we get our result

a′−r(y, s) = π−s Γ(s) ys
∑
m|r

m1−2s

∫ ∞
−∞

1

(x2 + y2)s
e2πirxdx. (10)
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This is where we use the techniques from the K-Bessel function. If r = 0, then
the condition m|r is vacuous, and so the above becomes

π−s Γ(s) ysζ(2s− 1)

∫ ∞
−∞

1

(x2 + y2)s
e−2πirxdx =

(5)
ζ(2s− 1)π−s+1/2Γ

(
s− 1

2

)
y1−s

whence

a0 = π−s Γ(s) ζ(2s) ys + ζ(2s− 1)π−s+1/2Γ
(
s− 1

2

)
y1−s.

To get to the form given in the proposition, recall the functional equation

π−w/2Γ
(w

2

)
ζ(w) = π(−1+w)/2Γ

(
1− w

2

)
ζ(1− w),

and apply it to w = 2s− 1. If r 6= 0, we get

a−r =
(5)

2|r|s−1/2
σ1−2s(|r|)

√
yKs−1/2(2π|r|y) = ar.

Corollary 3.7. E(z, s) satisfies a polynomial growth property, namely

E(x+ iy, s) = O(yσ)

as y →∞, where σ = max{Re(s), 1− Re(s)}. Hence E(z, s) is a Maass form.

Proof. By lemma 3.3, the non-constant terms rapidly go to 0 when y →∞, so
the function behaves asymptotically like a0(y, s), and as y → ∞, a0 = O(ys +
y1−s).

Theorem 3.8. The non-holomorphic Eisenstein series E(z, s) has meromor-
phic continuation to all s in C, analytic except for simple poles at s = 0 and
s = 1, where it has a residue of 1/2 and −1/2 respectively. In addition, it
satisfies the functional equation

E(z, s) = E(z, 1− s).

Proof. All the terms ar, for r 6= 0, are products of entire functions and as such
are entire (σs(x) and Ks(x) are entire functions of s, which is obvious from their
definitions). As for a0, Λ(s) = π−s/2Γ(s/2)ζ(s) has meromorphic continuation
to the entire complex plane with poles at 0 and 1.

We can thus use the equation

E(z, s) =

∞∑
r=−∞

ar(y, s)e
2πirx

to define a continuation for E(z, s); the rapid decay property proved in lemma
3.3 shows that this sum converges absolutely.
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The functional equation comes from the fact that an(y, s) = an(y, 1−s). This
is obvious for a0 (the mapping s 7→ 1− s simply exchanges the two summands).
For ar with r 6= 0, it comes from the previously shown identity Ks = K−s,
hence Ks−1/2 = K1/2−s = K1−s−1/2, and from the fact that in general

rsσ−2s(r) = rs
∑
m|r

m−2s = rs
∑

d1d2=r

d−2s
1 d0

2 =
∑

d1d2=r

d−s1 ds2,

and similarly r−sσ2s(r) =
∑
d1d2=r d

−s
1 ds2, applied to |r| and s− 1

2 .
Regarding the poles and the residues, note that ar is entire whenever r 6= 0.

As for a0, Γ(s) has a pole at s = 0 of residue 1, and ζ(s) has a pole at s = 1
of residue 1. Hence π−sΓ(s)ζ(2s)ys has a pole at s = 0 of residue 1

2 and one at

s = 1/2 of residue 1
2y

1/2, and πs−1ζ(2− 2s)Γ(1− s)y1−s has a pole at s = 1 of

residue − 1
2 and one at s = 1/2 of residue − 1

2y
1/2. Hence the poles at s = 1/2

cancel, and the poles of E(z, s) are exactly those given in the theorem.

The fact that the residues are independent of the value of z can be used for
the proof of the analytic class number formula.

Kronecker’s limit formula then gives an even more precise expansion of the
series at s = 1 :

Theorem 3.9 (Kronecker limit formula). The constant term of the Laurent
series for E(z, s) at s = 1 is

γ − log(2)− log(
√
y|η(z)|2),

or in other words

E(x+ iy, s) =
1

2(s− 1)
+ γ − log(2)− log(

√
y|η(z)|2) +O(s− 1)

as s→ 1, where γ is the Euler-Mascheroni constant, and η is the Dedekind êta
function

η(z) = eπiz/12
∞∏
n=1

(1− e2πinz)

or in terms of the discriminant function, η(z)24 = ∆(z)
(2π)12 .

Proof. To get this equation, we will need to calculate the Laurent series of
E(z, s) at s = 1. Once again, we will work first with a0, then with ar for r 6= 0.

For a0, we will use a trick and write ã0 = πs

Γ(s)a0, explicitly

ã0 = ζ(2s)ys +
Γ(s− 1/2)

Γ(s)
π1/2ζ(2s− 1)y1−s.

Since the ζ(2s)ys part is entire at s = 1, its contribution is simply

ζ(2)y1 +O(|s− 1|) =
π2y

6
+O(|s− 1|).
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For the G(s) := Γ(s−1/2)
Γ(s) π1/2ζ(2s−1)y1−s part, we use the logarithm to be able

to work term by term, recalling the expansions

ζ(s) =
1

s− 1
+ γ +O(|s− 1|) s→ 1

log(Γ(z)) = 1
2 log π − (2 log 2 + γ)(z − 1

2 ) +O(
∣∣z − 1

2

∣∣2)
∣∣z − 1

2

∣∣ < 1
2

log(Γ(1 + z)) = −γz +O(|z|2) |z| < 1.

Hence, using that log(1 + x) = x+O(|x|2) as x→ 1

log ζ(2s− 1) = log

(
1

2s− 2
+ γ +O(|s− 1|)

)
= − log(2s− 2) + log (1 + γ(2s− 2) +O(|s− 1|2)

= − log(2s− 2) + γ(2s− 2) +O(|s− 1|2)

as s→ 1, and

log Γ(s− 1
2 ) = 1

2 log π − (2 log 2 + γ)(s− 1) +O(|s− 1|2) s→ 1

log Γ(s) = −γ(s− 1) +O(|s− 1|2) s→ 1.

These approximations allow us to write logG(s) when s→ 1 as follows:

logG(s) = 1
2 log π − (2 log 2 + γ)(s− 1) + γ(s− 1)− log(2s− 2)

+ γ(2s− 2) + 1
2 log π + (1− s) log y +O(|s− 1|2)

= log π
2 − log(s− 1) + (2γ − 2 log 2− log y)(s− 1) +O(|s− 1|2).

One can then use the fact that ex = 1 + x+O(|x|2) as x→ 0 to get

G(s) = π
2

1
s−1 (1 + (2γ − 2 log 2− log y)(s− 1) +O(|s− 1|2))

= π
2

1
s−1 + π(γ − log 2− log

√
y) +O(|s− 1|),

which, along with the fact that

Γ(s)

πs
=

1

π
+O(|s− 1|)

gives us our final expansion for a0,

a0 = π
6 y +

1

2(s− 1)
+ γ − log 2− log

√
y +O(|s− 1|). (11)

Now for the other terms,∑
r∈Z\{0}

2|r|s−1/2
σ1−2s(|r|)

√
yKs−1/2(2π|r|y)e2πirx. (12)
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First of all note that ar = a−r; hence writing e2πirx = cos(2πrx)+i sin(2πrx),
the sine terms cancel since sin is an odd function, and the cosine terms add up
since cos is an even function. So we can rewrite the sum (12) above as

4

∞∑
r=1

rs−1/2σ1−2s(r)
√
yKs−1/2(2πry) cos(2πrx)

We have rs−1/2 =
√
r +O(|s− 1|) as s→ 1, and

σ1−2s(r) =
∑
d|r

d1−2s =
∑
d|r

(d−1 +O(|s− 1|)) = σ−1(r) +O(|s− 1|)

as s→ 1.
Finally, since (lemma 3.4) K1/2(x) =

√
π
2xe
−x, we get

Ks−1/2(2πry) =
1

2
√
r
√
y
e−2πry +O(|s− 1|) s→ 1

Hence, as s→ 1,

4

∞∑
r=1

rs−1/2σ1−2s(r)
√
yKs−1/2(2πry) cos(2πrx)

= 2

∞∑
r=1

σ−1(r)e−2πry cos(2πrx) +O(|s− 1|).

Our goal now is to simplify S :=
∑∞
r=1 σ−1(r)e−2πry cos(2πrx). Writing

q = e2πiz = e2πixe−2πry, we have

S =

∞∑
r=1

σ−1(r)e−2πry cos(2πrx) = Re

( ∞∑
r=1

σ−1(r)(qr)

)
.

Now the key step is the following, using the power series for log(1 + x) about
x = 0:

log

∞∏
n=1

(1− qn) =

∞∑
n=1

log(1− qn)

= −
∞∑
n=1

∞∑
m=1

qnm

m

= −
∞∑
N=1

∑
d|n

qN

d

= −
∞∑
N=1

σ−1(N)qN ,
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where the third equality comes from the identification N := nm. Hence we can
rewrite

S = −Re

(
log

∞∏
r=1

(1− qr)

)
.

Finally, recalling Re log z = log |z|, and the definition of η which is η(z) =
eπiz/12

∏∞
n=1(1− qn), we have

log |η(z)| = log

(
e−πy/12

∞∏
n=1

|1− qn|

)
= −πy

12
− S,

or in other words
S = −πy

12
− log |η(z)|.

So ∑
r∈Z\{0}

2|r|s−1/2
σ1−2s(|r|)

√
yKs−1/2(2π|r|y)e2πirx

= −π6 y − 2 log |η(z)|+O(|s− 1|), (13)

as s→ 1.
Putting together (11) and (13), one obtains

E(z, s) = π
6 y +

1

2(s− 1)
+ γ − log 2− log

√
y)− π

6 y − 2 log |η(z)|+O(|s− 1|),

as s → 1, which, cancelling out the π
6 y terms and noting 2 log x = log x2, is

exactly Kronecker’s limit theorem.
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