3.1. Which of the following sets are compact?

(a)
$$A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 < 2019\};$$

(b) $B = \{(a, b, c) \in \mathbb{R}^3 \mid a, b, c \text{ are integers and } a^2 + b^2 + c^2 < 2019\};$

(c)
$$C = \{(x, f(x)) \in \mathbb{R}^2 \mid x \in (0, 1], f(x) = \sin(\frac{1}{x})\};$$

- (d) $D = \{(\cos \theta, \sin \theta) \in \mathbb{R}^2 | \theta \text{ is a rational number}\};$
- (e) $E = \{(x, y, z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 \le 2\}.$

Solution:

- (a) A is bounded but not closed, because the boundary in not included.
- (b) B is compact because it contains finitely many points.
- (c) C is not closed. $(\frac{1}{2k\pi}, 0) \in C$ for any positive integer k and $(\frac{1}{2k\pi}, 0) \to (0, 0)$ for $k \to +\infty$, but $(0, 0) \notin C$.
- (d) D is not closed. Clearly $(0,1) \notin D$. Indeed, we know $(0,1) = (\cos \theta, \sin \theta)$ if and only if $\theta = (2k + \frac{1}{2})\pi$, $k \in \mathbb{Z}$, but $(2k + \frac{1}{2})\pi$ is never a rational number for any $k \in \mathbb{Z}$. Since any irrational can be the limit of a rational sequence, i.e. there exists a rational sequence $\theta_k, k \in \mathbb{N}$ with $\lim_{k \to +\infty} \theta_k = \frac{\pi}{2}$, by continuity we have $\lim_{k \to +\infty} (\cos \theta_k, \sin \theta_k) = (1, 0)$. Hence D is not closed.
- (e) E is closed and bounded, hence compact.
- **3.2.** Which of the following functions are continuous?

(a)
$$f_1(x,y) = \ln(|xy|+1), (x,y) \in \mathbb{R}^2;$$

- **(b)** $f_2(x,y) = \ln(xy), (x,y) \in \{(x,y) \in \mathbb{R}^2 | xy > 0\};$
- (c) $f_3(x,y) = \inf\{x^k + y^k \mid k \text{ is a positive integer}\}, (x,y) \in \mathbb{R}^2;$

(d)
$$f_4(x,y) = \int_x^y \sin(t) dt, (x,y) \in \{(x,y) \in \mathbb{R}^2 \mid x < y\}.$$

Solution:

- (a) $(x, y) \to xy$ is clearly continuous in \mathbb{R}^2 . $x \to \ln(|x|+1)$ is also continuous. By Proposition 3.2.9, f_1 is continuous.
- (b) $(x, y) \to xy$ is clearly continuous in $\{(x, y) \in \mathbb{R}^2 | xy > 0\}$ and $x \to \ln x$ is continuous in \mathbb{R}^+ . By Proposition 3.2.9, f_2 is continuous.
- (c) Clearly $f_3(1,0) = 1$. However, for any $\epsilon \in (0,1)$, $f_3(1-\epsilon,0) = 0$, then f_3 is not continuous.
- (d) For any $\epsilon > 0$, if $||(x_0, y_0) (x_1, y_1)|| < \epsilon$, then $|x_0 x_1| < \epsilon$ and $|y_0 y_1| < \epsilon$. Since $|\sin(t)| < 1$, we know $|f_4(x_0, y_0) f_4(x_1, y_1)| \le 2\epsilon$. Hence, f_4 is also continuous.