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4.1. Limit. Let f be a function on R2\{(0, 0)} given by f(x, y) = sin(x2+y2)
x2+y2 . Does the limit

lim(x,y)→(0,0) f(x, y) exist? If it exists, compute the limit.

Solution: The R 3 t 7→ sin(t) is continuous and differentiable and

d

dt

∣∣∣
t=0

sin(t) = cos(0) = 1.

From the definition of derivative, we have

sin(s) = sin(s)− sin(0) = d

dt

∣∣∣
t=0

sin(t) · s+ o(s) = s+ o(s), (1)

where s 7→ o(s) is a function such that

o(s)
s

s→0−→ 0 (2)

In polar coordinate system we can write x = r cos(θ) and y = r sin(θ) given (x, y) 6= (0, 0),
then f(x, y) = f(r) = sin(r2)

r2 . Hence lim(x,y)→(0,0) f(x, y) = limr→0 f(r) if the limits exist.
With (1) and (2) we have

f(r) = sin(r2)
r2 = r2 + o(r2)

r2 = 1 + o(r2)
r2 ,

and

lim
(x,y)→(0,0)

f(x, y) = lim
r→0

(
1 + o(r2)

r2

)
= 1.

4.2. Laplace operator. The Laplace operator ∆ on Rn is a differential operator such that
for any twice differentiable function f : Rn → R we have

∆f =
n∑
i=1

∂2
xif with ∂2

xif = ∂2f

∂x2
i

= ∂

∂xi

( ∂f
∂xi

)
.

Suppose U is a open set U ⊂ Rn and f : U ⊂ Rn → R is twice differentiable, i.e.

∆f =
n∑
i=1

∂2
xif = 0

then we say f is harmonic (on U).

(a) Define f : R2\{0} → R to be f(x) = log |x| for any x ∈ R2\{0}. Prove f is harmonic.

(b) For α ∈ R define fα : Rn → R to be fα(x) = |x|α for any x ∈ Rn\{0}. For which α ∈ R
is the function fα harmonic?

The heat operator ∂t − ∆x is defined such that for any twice differentiable function f :
Rn × R→ R we have

(∂t −∆x) f = ∂tf −
n∑
i=1

∂2
xif, (x, t) = ((x1, · · · , xn), t) ∈ Rn × R.
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(c) Prove the function u : Rn × (0,∞)→ R defined by

u(x, t) = 1
t
n
2
e−

|x|2
4t for any (x, t) ∈ Rn × (0,∞)

is a solution of the differential equation

(∂t −∆x)u = 0 (x, t) ∈ Rn × (0,∞)

Lösung.

(a) We have for any 1 ≤ i ≤ 2 and x ∈ Rn\{0} (f is C∞ in R2\{0})

∂2
xi log |x| = 1

2∂
2
xi log |x|2 = ∂xi

(
xi
|x|2

)
= 1
|x|2
− 2x2

i

|x|4

and

∆ log |x| = 2
|x|2
− 2

2∑
i=1

x2
i

|x|4
= 2
|x|2
− 2
|x|2

= 0.

(b) For any α ∈ R fα is twice differentiable and

∂xifα(x) = ∂xi

( n∑
i=1

x2
i

)α
2
 = α

2 · 2xi

(
n∑
i=1

x2
i

)α
2−1

= αxi|x|α−2

∂2
xifα(x) = α|x|α−2 + α(α− 2)x2

i |x|α−4

∆fα =
n∑
i=1

α|x|α−2 + α(α− 2)x2
i |x|α−4 = nα|x|α−2 + α(α− 2)|x|α−2 = α(α− n+ 2)|x|α−4.

Hence fα is harmonic if and only if α = 0 or α = 2− n.

(c) For any (x, t) ∈ Rn × (0,∞)

∂tu = −n2 t
−(n2 +1)e−

|x|2
4t + |x|

2

4t2
1
t
n
2
e−

|x|2
4t =

(
− n2t + |x|

2

4t2

)
u

∂xiu = −2xi
4t

1
t
n
2
e−

|x|2
4t = −xi2tu

∂2
xiu = − 1

2tu+ x2
i

4t2u =
(
− 1

2t + x2
i

4t2

)
u

∆u =
n∑
i=1

(
− 1

2t + x2
i

4t2

)
u =

(
− n2t + |x|

2

4t2

)
u = ∂tu.

4.3. Continuity. Are the following statements true? If the statement is true, prove it.
Otherwise give a counterexample.

(a) Let X ⊂ Rn, Y ⊂ Rm and p is a integer. Let f : X → Y and g : Y → Rp be function. If
g ◦ f is continuous, then g is continuous or f is continuous.

(b) Let X ⊂ Rn be closed and p is a integer. If f : X → Rp is a continuous function, then
f(X) is closed.
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Solution:

(a) False. We give a counterexample in one dimension, i.e. m = n = p = 1. With the
same idea, one can build counterexamples for any dimension. Let X = [0, 2], Y = [0, 3].
f(x) = x for x ∈ [0, 1] and f(x) = x + 1 for x ∈ (1, 2]. g(x) = x for x ∈ [0, 1] and
g(x) = x− 1 for x ∈ (1, 3]. Clearly, (g ◦ f)(x) = x is continuous but neither g nor f is
continuous.

(b) False. Note that Rn is closed. We define f(x) = 1
‖x‖2+1 , but f(Rn) = (0, 1] is not closed.

4.4. Partial derivative. Compute the derivatives of the following functions.

(a) f : (0, π2 )× R→ R, f(x, y) = [sin(y)]x;

(b) f(x, y) = x−y
x2+y2 ;

(c) f(x, y) = x2y sin(xy);

(d) f(x, y, z) = xy2z3.

Solution:

(a)

∂f

∂x
(x, y) = elog(sin(y))x∂f

∂x
(log(sin(y))x) = elog(sin(y))x log(sin(y)) = sin(y)x log(sin(y))

∂f

∂y
(x, y) = elog(sin(y))x ∂

∂y
(log(sin(y))x) = sin(y)xx cos(y)

sin(y) = x cos(y) sin(y)x−1

(b)
∂

∂x
f(x, y) = (x2 + y2)− (x− y)2x

(x2 + y2)2 = y2 − x2 + 2xy
(x2 + y2)2 ,

∂

∂y
f(x, y) = −(x2 + y2)− (x− y)2y

(x2 + y2)2 = y2 − x2 − 2xy
(x2 + y2)2

(c)
∂

∂x
f(x, y) = 2xy sin(xy) + x2y2 cos(xy),

∂

∂y
f(x, y) = x2 sin(xy) + x3y cos(xy)

(d)
∂

∂x
f(x, y, z) = y2z3,

∂

∂y
f(x, y, z) = 2xyz3,

∂

∂z
f(x, y, z) = 3xy2z2
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