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6.1. Differentiation rules in more variables

(a) Let f : R3 → R be given by

f(x, y, z) =
∫ cos(y)

sin(x)
eztdt.

Compute ∇f(π3 ,
π
2 , 0).

(b) Let f : R2 → R be given by

f(x, y) =
{

xy(x2−y2)
x2+y2 , if (x, y) 6= (0, 0)

0, if (x, y) = (0, 0).

Prove that ∂2f
∂x∂y (0, 0) and ∂2f

∂y∂x(0, 0) exist, and that

∂2f

∂x∂y
(0, 0) 6= ∂2f

∂y∂x
(0, 0).

Solution:

(a) Chain rule yields

∂f

∂x
(x, y, z) = − ∂

∂x

(∫ sin(x)

cos(y)
eztdt

)
= −ez sin(x) cos(x)

∂f

∂y
(x, y, z) = ∂

∂y

(∫ cos(y)

sin(x)
eztdt

)
= −ez cos(y) sin(y)

∂f

∂z
(x, y, z) = ∂

∂z

(∫ cos(y)

sin(x)
eztdt

)
=
∫ cos(y)

sin(x)

∂

∂z
(ezt)dt =

∫ cos(y)

sin(x)
teztdt

Let (x, y, z) = (π3 ,
π
2 , 0) and we have

∂f

∂x
(π3 ,

π
2 , 0) = − cos(π3 ) = −1

2

∂f

∂y
(π3 ,

π
2 , 0) = − sin(π2 ) = −1

∂f

∂z
(π3 ,

π
2 , 0) =

∫ cos(π2 )

sin(π3 )
tdt = −

∫ √3
2

0
tdt = −3

8

Then

∇f(π3 ,
π
2 , 0) =

−1
2
−1
−3

8

 ,

(b) First we look at the function y 7→ ∂f
∂x (0, y). For y 6= 0 we have

∂f

∂x
(0, y) = ∂

∂x

(
x3y − xy3

x2 + y2

)∣∣∣∣∣
x=0

=
(

3x2y − y3

x2 + y2 −
2x(x3y − xy3)

(x2 + y2)2

)∣∣∣∣∣
x=0

= −y.
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To compute ∂f
∂x (0, 0), note that

f(x, 0)− f(0, 0)
x

= 0− 0
x

= 0

for any x 6= 0. Then we can deduce ∂f
∂x (0, 0) = 0 and

∂f

∂x
(0, y) = −y ∀ y ∈ R

Obviously y 7→ ∂f
∂x (0, y) is differentiable and ∂2f

∂y∂x(0, 0) = ∂
∂y

(
∂f
∂x (0, y)

)∣∣∣
y=0

= −1.

To compute ∂2f
∂x∂y (0, 0) zu berechnen, first note that for any x 6= 0

∂f

∂y
(x, 0) = ∂

∂y

(
x3y − xy3

x2 + y2

)∣∣∣∣∣
y=0

=
(
x3 − 3xy2

x2 + y2 − 2y(x3y − xy3)
(x2 + y2)2

)∣∣∣∣∣
y=0

= x

We also have

f(0, y)− f(0, 0)
y

= 0− 0
y

= 0,

for any y 6= 0, which gives ∂f
∂y (0, 0) = 0. Now we can conclude

∂f

∂y
(x, 0) = x, ∀ x ∈ R.

and

∂2f

∂x∂y
(0, 0) = ∂

∂x

(
∂f

∂y
(x, 0)

)∣∣∣∣
x=0

= 1 6= −1 = ∂2f

∂y∂x
(0, 0).

6.2. The geometry of the gradient Let c ∈ R be a constant and let f : R2 → R be a
non-constant differentiable function. Assume that the equation f(x, y) = c defines a curve
C in the plane R2. I.e. there exists an interval I ⊂ R and an injective, differentiable map
γ : I → R2, so that

γ(I) = C = {(x, y) ∈ R2 | f(x, y) = c} (1)

and γ′(t) 6= 0 fr all t ∈ I. Prove the following statements:

(a) ∇f is perpendicular to C. I.e. for all t ∈ I we have ∇f(γ(t)) · γ′(t) = 0.

(b) The directional derivative of f in a direction along C vanishes. I.e. Dγ′(t)f(γ(t)) = 0
for all t ∈ I.

(c) The directional derivative of f is largest in a direction perpendicular to C.

Solution:

(a) We know I 3 t 7→ f ◦ γ(t) is a constant function, then d
dtf ◦ γ(t) = 0. Chain rule yields

0 = d

dt
f ◦ γ(t) = df(γ(t))γ′(t) = ∇f(γ(t)) · γ′(t), ∀ t ∈ I.

This means ∇f is perpendicular to C.
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(b) f is differentiable and with (a) we have

Dγ′(t)f(γ(t)) = df(γ(t))γ′(t) = ∇f(γ(t)) · γ′(t) = 0,

(c) Let t ∈ I and v ∈ R2 with ‖v‖ = 1. Let n be a vector with ‖n‖ = 1 and n · γ′(t) = 0.
Also, n is a normal vector of C at the point γ(t) ∈ C. {γ′(t), n} forms a basis for R2

and there exist a, b ∈ R such that

v = aγ′(t) + bn.

Since γ′(t) ⊥ n, we have 1 = ‖v‖2 = |a|2‖γ′(t)‖2 + |b|2‖n‖2 = |a|2‖γ′(t)‖2 + |b|2, then
|b| ≤ 1 with |b| = 1 if and only if v = ±n. Also ∇f(γ(t)) ⊥ γ′(t), we have

Dvf(γ(t)) = ∇f(γ(t)) · v = ∇f(γ(t)) · (aγ′(t) + bn)
= b∇f(γ(t)) · n = bDnf(γ(t)) ≤ max{Dnf(γ(t)), D−nf(γ(t))}.

This concludes the proof.

6.3. Tangential planes Let f : R2 → R be given by

f(x, y) = sin(x)− y3 + y2.

(a) Determine the equation of the tangential plane of the surface

G(f) := {(x, y, f(x, y)) ∈ R3 | (x, y) ∈ R2} ⊂ R3

at the point (0, 3, f(0, 3)) = (0, 3,−18).

(b) Determine a constant c ∈ R, so that the vectorc0
1


is perpendicular to the surface G(f) at the point (π2 , 0, 1) ∈ G(f).

Solution:

(a) First we compute

∂f

∂x
(x, y) = cos(x), ∂f

∂y
(x, y) = −3y2 + 2y (2)

and then we have
∂f

∂x
(0, 3) = 1, ∂f

∂y
(0, 3) = −3 · 9 + 2 · 3 = 3(2− 9) = −21.

A parametrization of G(f) is F : R2 → R3,

F (x, y) = (x, y, f(x, y))

Thus a basis of the tangent plane of G(f) at the point (0, 3,−18) is

v := dF (0, 3)
(

1
0

)
, u := dF (0, 3)

(
0
1

)
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We compute the differential dF (0, 3)

dF (0, 3) =

 1 0
0 1

∂f
∂x (0, 3) ∂f

∂y (0, 3)

 =

1 0
0 1
1 −21

 .
We also have

v =

1
0
1

 , u =

 0
1
−21

⇒ v × u =

−1
21
1


This means the point (x, y, z) ∈ R3 lies on the plane whenxy

z

 =

 0
3
−18

+ w

and w · (v × u) = 0. Then it is equivalent to

0 = (v × u) ·

 x
y − 3
z + 18

 =

−1
21
1

 ·
 x
y − 3
z + 18

 = −x+ 21y − 3 · 21 + z + 18.

Hence the tangent plane is given by

−x+ 21y + z = 45.

(b) It is easy to see

∂f

∂x
(π2 , 0) = 0, ∂f

∂y
(π2 , 0) = 0

Similar to (a), the basis of the tangent plane of G(f) at (π2 , 0, 1) is

v :=

1
0
0

 , u :=

0
1
0


Also

v × u =

0
0
1


is perpendicular to G(f) at the point (π2 , 0, 1), which gives c = 0.
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