6.1. Differentiation rules in more variables

(a) Let $f : \mathbb{R}^3 \to \mathbb{R}$ be given by

$$f(x, y, z) = \int_{\sin(x)}^{\cos(y)} e^{zt} dt.$$

Compute $\nabla f(\frac{\pi}{3}, \frac{\pi}{2}, 0)$.

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, & \text{if } (x,y) \neq (0,0) \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ and $\frac{\partial^2 f}{\partial y \partial x}(0,0)$ exist, and that

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) \neq \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

Solution:

(a) Chain rule yields

$$\begin{aligned} \frac{\partial f}{\partial x}(x,y,z) &= -\frac{\partial}{\partial x} \left(\int_{\cos(y)}^{\sin(x)} e^{zt} dt \right) = -e^{z\sin(x)}\cos(x) \\ \frac{\partial f}{\partial y}(x,y,z) &= \frac{\partial}{\partial y} \left(\int_{\sin(x)}^{\cos(y)} e^{zt} dt \right) = -e^{z\cos(y)}\sin(y) \\ \frac{\partial f}{\partial z}(x,y,z) &= \frac{\partial}{\partial z} \left(\int_{\sin(x)}^{\cos(y)} e^{zt} dt \right) = \int_{\sin(x)}^{\cos(y)} \frac{\partial}{\partial z}(e^{zt}) dt = \int_{\sin(x)}^{\cos(y)} te^{zt} dt \end{aligned}$$

Let $(x, y, z) = (\frac{\pi}{3}, \frac{\pi}{2}, 0)$ and we have

$$\begin{aligned} \frac{\partial f}{\partial x}(\frac{\pi}{3}, \frac{\pi}{2}, 0) &= -\cos(\frac{\pi}{3}) = -\frac{1}{2} \\ \frac{\partial f}{\partial y}(\frac{\pi}{3}, \frac{\pi}{2}, 0) &= -\sin(\frac{\pi}{2}) = -1 \\ \frac{\partial f}{\partial z}(\frac{\pi}{3}, \frac{\pi}{2}, 0) &= \int_{\sin(\frac{\pi}{3})}^{\cos(\frac{\pi}{2})} t dt = -\int_{0}^{\frac{\sqrt{3}}{2}} t dt = -\frac{3}{8} \end{aligned}$$

Then

$$\nabla f(\frac{\pi}{3}, \frac{\pi}{2}, 0) = \begin{pmatrix} -\frac{1}{2} \\ -1 \\ -\frac{3}{8} \end{pmatrix},$$

(b) First we look at the function $y \mapsto \frac{\partial f}{\partial x}(0, y)$. For $y \neq 0$ we have

$$\frac{\partial f}{\partial x}(0,y) = \left. \frac{\partial}{\partial x} \left(\frac{x^3y - xy^3}{x^2 + y^2} \right) \right|_{x=0} = \left. \left(\frac{3x^2y - y^3}{x^2 + y^2} - \frac{2x(x^3y - xy^3)}{(x^2 + y^2)^2} \right) \right|_{x=0} = -y.$$

To compute $\frac{\partial f}{\partial x}(0,0)$, note that

$$\frac{f(x,0) - f(0,0)}{x} = \frac{0 - 0}{x} = 0$$

for any $x \neq 0$. Then we can deduce $\frac{\partial f}{\partial x}(0,0) = 0$ and

$$\frac{\partial f}{\partial x}(0,y) = -y \quad \forall \ y \in \mathbb{R}$$

Obviously $y \mapsto \frac{\partial f}{\partial x}(0,y)$ is differentiable and $\frac{\partial^2 f}{\partial y \partial x}(0,0) = \left. \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x}(0,y) \right) \right|_{y=0} = -1.$

To compute $\frac{\partial^2 f}{\partial x \partial y}(0,0)$ zu berechnen, first note that for any $x \neq 0$

$$\frac{\partial f}{\partial y}(x,0) = \left. \frac{\partial}{\partial y} \left(\frac{x^3 y - xy^3}{x^2 + y^2} \right) \right|_{y=0} = \left. \left(\frac{x^3 - 3xy^2}{x^2 + y^2} - \frac{2y(x^3 y - xy^3)}{(x^2 + y^2)^2} \right) \right|_{y=0} = x$$

We also have

$$\frac{f(0,y) - f(0,0)}{y} = \frac{0 - 0}{y} = 0,$$

for any $y \neq 0$, which gives $\frac{\partial f}{\partial y}(0,0) = 0$. Now we can conclude

$$\frac{\partial f}{\partial y}(x,0) = x, \quad \forall \ x \in \mathbb{R}.$$

and

$$\frac{\partial^2 f}{\partial x \partial y}(0,0) = \frac{\partial}{\partial x} \left. \left(\frac{\partial f}{\partial y}(x,0) \right) \right|_{x=0} = 1 \neq -1 = \frac{\partial^2 f}{\partial y \partial x}(0,0).$$

6.2. The geometry of the gradient Let $c \in \mathbb{R}$ be a constant and let $f : \mathbb{R}^2 \to \mathbb{R}$ be a non-constant differentiable function. Assume that the equation f(x, y) = c defines a curve C in the plane \mathbb{R}^2 . I.e. there exists an interval $I \subset \mathbb{R}$ and an injective, differentiable map $\gamma : I \to \mathbb{R}^2$, so that

$$\gamma(I) = C = \{ (x, y) \in \mathbb{R}^2 \mid f(x, y) = c \}$$
(1)

and $\gamma'(t) \neq 0$ fr all $t \in I$. Prove the following statements:

- (a) ∇f is perpendicular to C. I.e. for all $t \in I$ we have $\nabla f(\gamma(t)) \cdot \gamma'(t) = 0$.
- (b) The directional derivative of f in a direction along C vanishes. I.e. $D_{\gamma'(t)}f(\gamma(t)) = 0$ for all $t \in I$.
- (c) The directional derivative of f is largest in a direction perpendicular to C.

Solution:

(a) We know $I \ni t \mapsto f \circ \gamma(t)$ is a constant function, then $\frac{d}{dt}f \circ \gamma(t) = 0$. Chain rule yields

$$0 = \frac{d}{dt}f \circ \gamma(t) = df(\gamma(t))\gamma'(t) = \nabla f(\gamma(t)) \cdot \gamma'(t), \quad \forall \ t \in I.$$

This means ∇f is perpendicular to C.

(b) f is differentiable and with (a) we have

$$D_{\gamma'(t)}f(\gamma(t)) = df(\gamma(t))\gamma'(t) = \nabla f(\gamma(t)) \cdot \gamma'(t) = 0,$$

(c) Let $t \in I$ and $v \in \mathbb{R}^2$ with ||v|| = 1. Let **n** be a vector with $||\mathbf{n}|| = 1$ and $\mathbf{n} \cdot \gamma'(t) = 0$. Also, **n** is a normal vector of C at the point $\gamma(t) \in C$. $\{\gamma'(t), \mathbf{n}\}$ forms a basis for \mathbb{R}^2 and there exist $a, b \in \mathbb{R}$ such that

$$v = a\gamma'(t) + b\mathbf{n}.$$

Since $\gamma'(t) \perp \mathbf{n}$, we have $1 = \|v\|^2 = |a|^2 \|\gamma'(t)\|^2 + |b|^2 \|\mathbf{n}\|^2 = |a|^2 \|\gamma'(t)\|^2 + |b|^2$, then $|b| \le 1$ with |b| = 1 if and only if $v = \pm \mathbf{n}$. Also $\nabla f(\gamma(t)) \perp \gamma'(t)$, we have

$$D_v f(\gamma(t)) = \nabla f(\gamma(t)) \cdot v = \nabla f(\gamma(t)) \cdot (a\gamma'(t) + b\mathsf{n})$$

= $b\nabla f(\gamma(t)) \cdot \mathsf{n} = bD_\mathsf{n} f(\gamma(t)) \le \max\{D_\mathsf{n} f(\gamma(t)), D_{-\mathsf{n}} f(\gamma(t))\}.$

This concludes the proof.

6.3. Tangential planes Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \sin(x) - y^3 + y^2.$$

(a) Determine the equation of the tangential plane of the surface

$$\mathcal{G}(f) := \{ (x, y, f(x, y)) \in \mathbb{R}^3 \mid (x, y) \in \mathbb{R}^2 \} \subset \mathbb{R}^3$$

at the point (0, 3, f(0, 3)) = (0, 3, -18).

(b) Determine a constant $c \in \mathbb{R}$, so that the vector

$$\begin{pmatrix} c \\ 0 \\ 1 \end{pmatrix}$$

is perpendicular to the surface $\mathcal{G}(f)$ at the point $(\frac{\pi}{2}, 0, 1) \in \mathcal{G}(f)$.

Solution:

(a) First we compute

$$\frac{\partial f}{\partial x}(x,y) = \cos(x), \quad \frac{\partial f}{\partial y}(x,y) = -3y^2 + 2y$$
(2)

and then we have

$$\frac{\partial f}{\partial x}(0,3) = 1, \quad \frac{\partial f}{\partial y}(0,3) = -3 \cdot 9 + 2 \cdot 3 = 3(2-9) = -21.$$

A parametrization of $\mathcal{G}(f)$ is $F : \mathbb{R}^2 \to \mathbb{R}^3$,

$$F(x,y) = (x,y,f(x,y))$$

Thus a basis of the tangent plane of $\mathcal{G}(f)$ at the point (0, 3, -18) is

$$v := dF(0,3) \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \ u := dF(0,3) \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

We compute the differential dF(0,3)

$$dF(0,3) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial f}{\partial x}(0,3) & \frac{\partial f}{\partial y}(0,3) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 1 & -21 \end{pmatrix}.$$

We also have

$$v = \begin{pmatrix} 1\\0\\1 \end{pmatrix}, \ u = \begin{pmatrix} 0\\1\\-21 \end{pmatrix} \Rightarrow v \times u = \begin{pmatrix} -1\\21\\1 \end{pmatrix}$$

This means the point $(x, y, z) \in \mathbb{R}^3$ lies on the plane when

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 3 \\ -18 \end{pmatrix} + w$$

and $w \cdot (v \times u) = 0$. Then it is equivalent to

$$0 = (v \times u) \cdot \begin{pmatrix} x \\ y - 3 \\ z + 18 \end{pmatrix} = \begin{pmatrix} -1 \\ 21 \\ 1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y - 3 \\ z + 18 \end{pmatrix} = -x + 21y - 3 \cdot 21 + z + 18.$$

Hence the tangent plane is given by

$$-x + 21y + z = 45.$$

(b) It is easy to see

$$\frac{\partial f}{\partial x}(\frac{\pi}{2},0) = 0, \quad \frac{\partial f}{\partial y}(\frac{\pi}{2},0) = 0$$

Similar to (a), the basis of the tangent plane of $\mathcal{G}(f)$ at $(\frac{\pi}{2}, 0, 1)$ is

$$v := \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \ u := \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

Also

$$v \times u = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

is perpendicular to $\mathcal{G}(f)$ at the point $(\frac{\pi}{2}, 0, 1)$, which gives c = 0.