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10.1. Conservative vector-fields

For which of the following vector-fields v does there exist a function f : R2 → R satisfying
v = ∇f?

1. v(x, y) =
(
x− y
x− y

)

2. v(x, y) =
(
x2 − y
x3 + 2xy

)

3. v(x, y) =
(
x3 + 2xy
x2 − y

)

4. v(x, y) =
(
x3 − xy2

x2y − y5

)

Solution : As R2 is star-shaped, it suffices to check the condition ∂yv1 = ∂xv2, where
v = (v1, v2) to determine if v is conservative or not. Indeed, for star-shaped domains,
∂yv1 = ∂xv2 implies that v is conservative, from Theorem 4.1.17. For general open domains,
v is conservative implies ∂yv1 = ∂xv2 from Proposition 4.1.13.

1. We have ∂yv1 = −1 6= 1 = ∂xv2, so v is not conservative.

2. We have ∂yv1(x, y) = −1, while ∂xv2(x, y) = 3x2. Therefore, v is not conservative.

3. We have ∂yv1(x, y) = 2x = ∂xv2(x, y), so v is conservative.

4. We have ∂yv(x, y) = −2xy while ∂xv(x, y) = 2xy. Therefore, v is not conservative.

10.2. An example Let V : R2\{0} → R2 be defined by

V (x, y) =
(

x

x2 + y2 ,
y

x2 + y2

)
1. Show that V satisfies the necessary condition to be conservative in proposition 4.1.13.

2. Compute the pathintegral of V around the curve γ(t) = (sin(t),− cos(t)), 0 ≤ t ≤ 2π.

Solution:

1. Writing V = (V1, V2), we have

∂yV1(x, y) = ∂xV2(x, y) = − 2xy
x2 + y2 .

2. We have∫ 2π

0
V (s) · d~s =

∫ 2π

0
(sin(t) cos(t)− cos(t) sin(t)) dt = 0

10.3. Pathintegrals Compute in the following exercises the pathintegral of the vectorfield
v along the path.

1. v(x, y) =
(

x

x2 + y2 + 1 ,
y

x2 + y2 + 1

)
, along the circle x2 + y2 − 2x = 1.
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2. v(x, y, z) =

 2xy2z
2x2yz

x2y2 − 2z

, along the path γ(t) =
(

cos(t),
√

3
2 sin(t), 1

2 sin(t)
)
, 0 ≤ t ≤

2π.

Solution:

1. We see by direct computation that

∂yv1 = −2xy
(x2 + y2 + 1)2 = ∂xv2

and we know R2 is star-shaped. Therefore, v is conservative and the integral evaluates
to 0. We can also verify this by computing g. Note that v(x, y) = ∇g(x, y). We have

∂xg = x

x2 + y2 + 1 ⇒ g =
∫

x

x2 + y2 + 1dx = log(
√
x2 + y2 + 1) + C(y)

and

∂yg = y

x2 + y2 + 1
!= y

x2 + y2 + 1 + ∂yC(y) ⇒ C(y) = 0

We have g = log(
√
x2 + y2 + 1) and the integral is

∫
γ vd~s = g(γ(2π))− g(γ(0)) = 0

2. We can either check the condition on the first derivatives

∂yv1 = 4xyz = ∂xv2, ∂zv1 = 2xy2 = ∂xv3, ∂zv2 = 2x2y = ∂yv3

and see v is conservative, or we can find g to verify that v is conservative:

∂xg = 2xy2z ⇒ g =
∫

2xy2zdx = x2y2z + C(y, z)

∂yg = 2x2yz
!= 2x2yz + ∂yC(y, z) ⇒ C(y, z) = C(z)

∂zg = x2y2 − 2z != x2y2 + ∂zC(z) ⇒ C(z) =
∫
−2zdz = −z2

v(x, y, z) = ∇g = ∇(x2y2z − z2)

Since v is conservative, the integral vanishes again:
∫
γ vd~s = g(γ(2π))− g(γ(0)) = 0
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