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11.1. Fubini’s theorem for explicit functions I

(1) Compute

∫
[−1,1]×[2,3]

(
x4y − y5x+ y3

)
dxdy

(2) Let D2 = R2 ∩ {(x, y) : x2 + y2 ≤ 1} be the unit disk in the plan. Compute

∫
D2
x2y2dxdy

by following the following steps.

(a) Show that

∫ π
2

0
cos4(θ) sin2(θ)dθ = π

32

(b) Show that for all continuous function f : D2 → R, we have

∫
D2
f(x, y)dxdy =

∫ 1

−1

(∫ √1−x2

−
√

1−x2
f(x, y)dy

)
dx.

(c) Compute

∫
D2
x2y2dxdy,

by making the formula of question (2) and a (1-dimensional) change of variable
using trigonometric functions and symmetry.

Solution:

(1) We have

∫
[−1,1]×[2,3]

(
x4y − y5x+ y3

)
dxdy =

∫ 3

2

(∫ 1

−1
x4y − y5x+ y3dx

)
dy

=
∫ 3

2

[yx5

5 − y
5x

2

2

]1

−1
+ 2y3

 dxdy
=
∫ 3

2

(2y
5 + 2y3

)
dy

=
[
y2

5 + y4

2

]3

2
= 9− 4

5 + 81− 16
2 = 67

2 .
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(2) (a) Using sin(2θ) = 2 cos(θ) sin(θ), cos(2θ) = 2 cos2(θ) − 1 and cos2 + sin2 = 1, we
obtain

cos4(θ) sin2(θ) = 1
4 cos2(θ) sin2(2θ) = 1

4

(1 + cos(2θ)
2

)(
1− cos2(2θ)

)
= 1

4

(1 + cos(2θ)
2

)(1− cos(4θ)
2

)
(1)

= 1
16 (1 + cos(2θ)− cos(4θ)− cos(2θ) cos(4θ))

= 1
32 (2 + 2 cos(2θ)− 2 cos(4θ)− 2 cos(2θ) cos(4θ))

= 1
32 (2 + 2 cos(2θ)− 2 cos(4θ)− cos(2θ)− cos(6θ))

= 1
32 (2 + cos(2θ)− 2 cos(4θ)− cos(6θ)) (2)

where we used

cos(2θ) cos(4θ) = 1
2 (cos(2θ) + cos(6θ)) ,

an identity which can be derived from the de Moivre’s formula

cos(2θ) cos(4θ) =

(
e2iθ + e−2iθ

)
2

(
e4iθ + e−4iθ

)
2 = 1

4
(
e2iθ + e−2iθ + e6iθ + e−6iθ

)
= 1

2 (cos(2θ) + cos(6θ)) .

Now, we have obviously for all integer k ≥ 1∫ π
2

0
cos(2kθ)dθ =

[sin(2kθ)
k

]π
2

0
= sin(πk) = 0. (3)

Therefore, by (1) and (3), we obtain∫ π
2

0
cos4(θ) sin2(θ)dθ =

∫ π
2

0

1
32 (2 + cos(2θ)− 2 cos(4θ)− cos(6θ)) dθ = π

32 .

Remark: One could also directly expand cos4(θ) sin2(θ) with de Moivre’s formula,
but the computation would be slightly longer.

(b) We have for all (x, y) ∈ D2 the inequality

x2 + y2 ≤ 1 (4)

which implies that −1 ≤ x ≤ 1. Therefore, (4) holds if and only −1 ≤ x ≤ 1 and

y2 ≤ 1− x2

which is equivalent to (notice that 1− x2 ≥ 0) −
√

1− x2 ≤ y ≤
√

1− x2. Finally,
we have proved that

D2 = R2 ∩ {(x, y) : x2 + y2 ≤ 1}

= R2 ∩ {(x, y) : −1 ≤ x ≤ 1 and −
√

1− x2 ≤ y ≤
√

1− x2}. (5)

The integral formula is then a direct consequence of (5) and Fubini’s theorem.
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(c) Using the formula in (b), we find

∫
D2
x2y2dxdy =

∫ 1

−1
x2
(∫ √1−x2

−
√

1−x2
y2dy

)
dx =

∫ 1

−1
x2
[
y3

3

]√1−x2

−
√

1−x2

dx

= 2
3

∫ 1

−1
x2
(
1− x2

) 3
2 dx = 4

3

∫ 1

0
x2
(
1− x2

) 3
2 dx (6)

where we used the symmetry of the integral in the last equality (formally, one can
make a change of variable t = −x in the integral

∫ 0
−1 to obtain the result). Now,

we make the change of variable x = sin(θ) to obtain (using 1− sin2 = cos2)∫ 1

0
x2
(
1− x2

) 3
2 dx =

∫ π
2

0
sin2(θ)

(
1− sin2(θ)

) 3
2 cos(θ)dθ =

∫ π
2

0
sin2(θ) cos4(θ)dθ.

(7)

Therefore, thanks of the computation in (a), (6) and (7)∫
D2
x2y2dxdy = 4

3

∫ π
2

0
sin2(θ) cos4(θ)dθ = 4

3 ×
π

32 = π

24 .

Remark: Once we know the change of variables, we can use polar coordinates to find∫
D2
x2y2dxdy =

∫ 1

0

∫ 2π

0
r5 cos2(θ) sin2(θ)dθdr = 1

6

∫ 2π

0
cos2(θ) sin2(θ)dθ

= 1
24

∫ 2π

0
sin2(2θ)dθ = 1

24

∫ 2π

0
(1− cos2(2θ))dθ

= 1
24

∫ 2π

0

(
1− 1 + cos(4θ)

2

)
dθ = π

24 ,

where we used sin(2θ) = cos(θ) sin(θ) and cos(2θ) = 2 cos2(θ)− 1.

11.2. Fubini’s theorem for explicit functions II

Compute the following double integrals
∫
D f(x, y)dxdy, where the continuous function f :

D → R and the domain D are given by

1. f(x, y) = x, and D = R2 ∩ {(x, y) : y ≥ 0, x− y + 1 ≥ 0, x+ 2y − 4 ≤ 0}.

2. f(x, y) = cos(xy), and D = R2 ∩ {(x, y) : 1 ≤ x ≤ 2, 0 ≤ xy ≤ π
2 }.

3. f(x, y) = 1
(x+y)3 , and D = R2 ∩ {(x, y) : 1 ≤ x ≤ 3, y ≥ 2, x+ y ≤ 5}.

4. f(x, y) = xy
1+x2+y2 , and D = R2 ∩ {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, x2 + y2 ≥ 1}.

Solution:

1. For all (x, y) ∈ D, we have y ≥ 0, and y − 1 ≤ x ≤ 4− 2y, which is non-empty if and
only y − 1 ≤ 4− 2y, or y ≤ 5

3. Therefore, we have

∫
D
f(x, y)dxdy =

∫ 5
3

0

∫ 4−2y

y−1
xdxdy = 1

2

∫ 5
3

0

(
(4− 2y)2 − (y − 1)2

)
dy = 275

54 .
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2. We have∫
D
f(x, y)dxdy =

∫ 2

1

(∫ π
2x

0
cos(xy)dy

)
dx =

∫ 2

1

[sin(xy)
x

] π
2x

0
dx =

∫ 2

1

dx

x
= log(2).

3. We have∫
D
f(x, y)dxdy =

∫ 3

1

∫ 5−x

2

dy

(x+ y)3dx =
∫ 3

1
−1

2

( 1
25 −

1
(x+ 2)2

)
dx = 2

75 .

4. We have∫
D
f(x, y)dxdy =

∫ 1

0

(∫ 1
√

1−x2

xy

1 + x2 + y2dy

)
dx

=
∫ 1

0

[
x

2 log
(
1 + x2 + y2

)]1

√
1−x2

dx

=
∫ 1

0

x

2
(
log(2 + x2)− log(2)

)
dx

= 3
4 log

(3
2

)
− 1

4 .

11.3. Fubini’s theorem for explicit functions III

Compute the area of the domain

D = R2 ∩ {(x, y) : −1 ≤ x ≤ 1, x2 ≤ y ≤ 4− x3}.

Solution: We have

area(D) =
∫
D
dxdy =

∫ 1

−1

∫ 4−x3

x2
dydx =

∫ 1

−1

(
4− x3 − x2

)
dx =

[
4x− x4

4 −
x3

3

]1

−1
= 22

3 .

Remark: Notice that for all −1 ≤ x ≤ 1, we have 4− x3 ≥ 3 > x2, so the decomposition of
the domain in the previous question is correct.

11.4. Are the following sets negligible in R3?

1. {(i, j, k) ∈ R3 | i, j, k ∈ Z, i2 + j2 + k2 < 2019}.

2. {(x, y, z) ∈ R3 | x+ y + z = 1, x, y ∈ [0, 1]}.

Solution:

1. Negligible. This set has finitely many distinct points. We just need to build finitely
many constant maps from [0, 1] to these finitely many distinct points.

2. Negligible. We just need one map from [0, 1]× [0, 1] to R3, which is gvien by (x, y)→
(x, y, 1− x− y).
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