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14.1.

(1)

Multiple choice questions

There is a unique solution f of the differential equation
Y'+ @+ 1)y +y=0
such that f(—1) = —1.

True O  False O

Solution. This is false, as there is a 1-dimensional vector space of solutions by Cauchy-
Lipschitz.

If fis C? on R? and f is maximal at (0,0), then
02£(0,0) + 9,£(0,0) = 0.

True M False O

Solution. Since Df(0,0) = 0, the claim follows trivially by taking the sum of partial
derivatives.

Let f be a C? function R? — R and define g(u,v) = f(u + v,u —v). We have
Oy29 = Op2 f(u+v,u —v) + 02 f(u+wv,u—v).

True O  False M

Solution. This is indeed false, since

Opg(u,v) = Op f(u+v,u—v) — Oy f(u+v,u—0)
O0y29(u,v) = Op2 f(u+v,u —v) =20y f(u+v,u —v) + 02 f(u+v,u —v).

If f: R? — R is of class C2, V£(0,0,0) = 0, and the Hessian matrix of f at (0,0,0) is

S = o
[ Y
W = O

Then f has at (0,0,0)

A local minimum
A local maximum O
A saddle point O

Solution. We have 4 > 0,
41 4 1 0
det(1 4>:15>0 det {1 4 1| =41>0.
01 3

Therefore, by the Sylvester criterion, f admits a local minimum at (0,0, 0).
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(5) The center of mass of a compact subset X C R? of positive area (Area(X) > 0) is equal
to

1 1
(1‘07y0) = (mm/)(l'dwdy, M/}(ydl’dy) .
True M False [
Solution. Indeed, this is just the definition.

(6) Let f: R — R3 be a C! vector field. The vector field is conservative if and only
if curl(f) = 0.

True M False O

Solution. This exactly means that the 1-form associated to f is closed, and R? is
simply connected.

14.2. ODE

Find the solution f of the ODE
y'+y —by=uz

such that f(0) =1 and f/(0) =0
Solution. Since
X2+ X-6=(X—-2)(X+3),
the solutions of the homogeneous equation are
y(x) = A\e* 4+ Age ™37,
As the right-hand side is a polynomial, we can look for a particular solution of the form
yo(x) =ax +b
for some a,b € R. Then we get
Yy + yh — 6y0 = a — 6(ax +b) = —6az + (a — 6b) = z,

so that
1 1

a=—-, b=

6 367
Therefore, the solutions of the equation are

1
y(x) = A\ 4 Aoe ™37 — 6 (6x+1).

Now, we have

1

=A Ay — —
y(0) 1+ A2 36
1

y/(O) = 2)\2 - 3)\2 - 6
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Therefore, y solves the initial conditions if and only if

117 13 68 17

= — =" and A= _—r
5-36 20

A =L
! 5.36 45

Finally, the solution is

1 1 1
f(:L’) — £€2x+l s A

50 456 36(63:—#1).

14.3. Hessian

Compute the Hessian of f(z,y,2) = /ot +y*+ 22 +1 at (2,9, 2) = (0,0,0).

Solution. As \/1+t =1+ g + O(t?), we find

1 1
fay,2) =145 (@ 4y +22) 0@ +y* +22) = 14 527+ 0 + ¢ +2°)°).

Therefore, we have

Hess f(0,0) =

o O O
o O O
= O O

14.4. Integral
Compute the integral
/ z?y? dedy
D2
where D? C R? is the unit disk defined by

D* =R*N{(z,y) : * +4* <1},

Solution. Using polar coordinates, we find

1 27 2m
/ 2?y? dady = (/ r5d7') (/ cos?() sin2(9)d0) = 1/ sin®(26)d6
D? 0 0 24 Jo

1 4m . 9 1 2m . 9
= 4—8/0 sin”(t)dt = ﬂ/o sin”(t)dt = 2%

14.5. Taylor polynomial
Compute the Taylor formula at order 2 of f(z,y,z) = cos (ﬁ — H%) at (z,y,2) = (0,0).

Solution. Recall that
2

cos(t)=1— % + O(th).
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Therefore, we have

! z* v’ 2zy 22 2y2
:1—— _
f(x,y,2) 5 ((1+y2)2+(1+22)2 A0+ ) +O0((z" +y~ + 27)°)
1
=1- B (:c2 + 92 — Qxy) +O0((z* + 32 + 2%)?)
=1- %xQ - %yQ +ay+O0((2® +y* + 22)?).

Therefore, the Taylor polynomial T(2070,0)f of order 2 of f at (x,y,2) = (0,0,0) is given by

1 1
Th00) f(@,y,2) =1 - 5952 _ §y2 +ay.

14.6. Critical points
Let U =R? N {(z,y) | * >0, y > 0}. Define

f(x,y)Z%Jr ”

r—1
2

for all (z,y) € U. Find the values of (z,y) € R? such that f has a critical point at (z,y).
Determine whether they are a local maximum, a local minimum or a saddle point.

Solution.

We have

1 1 20 —1
Df(x,y) = (‘23/$2+y272x—(xy3)> = (0,0)

if and only if

1
—§y3 + .72'2 =0
1
§y3 —2z(x—1)=0
which yields (as z > 0 and y is real)
(z,y) = (2,2).

Now, we have
Y 1 _ 2
i = (20, ).
Therefore, we have
1 3
D?f(2,2) = ( 4 _8>

and

3
D2 f(2,2) = ——
det D*f(2,2) 64<0

which implies that D?f(2,2) admits a strictly positive eigenvalue and a strictly negative
eigenvalue. We conclude that (2,2) is a saddle point of f.

14.7. Vector field
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(1) Check that the vector-field R?
f(z,y) = ay® — 5ty +5,-Ty° — 2° + 22%y)
is conservative.

(2) Compute a potential of f.
(3) Compute

Af-dg,

where v is the parametrised curve

T 5’
=, — R?
B

0 — (; + \}5 cos(), % + \}5 sin(@)) :

Oriented path of ~

Solution.
(1) Ome can check directly that
Oy <2xy2 — 5xty + 5) =dzy — bzt = 9, (—7y6 — 2’ + 2$2y) .
As R? is simply connected (star-shaped), we deduce that f is conservative.
(2) A potential is given by w(z,y) = 22y? — 2%y + 5z — y".
(3) As f is conservative, we have

frea5=e(1(5)) =2 (:(3))

=¢(0,0) —p(1,1) =—(1-14+5-1)
= —4.

14.8. Line integral
Let f(z,y) = (cos(xy),sin(zy)). Compute the line integral

/j-dg
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along the rectangle with vertices (0,0), (0, ), (m,7) and (7, 0) oriented counterclockwise.

Solution. We let 71, 2,3, 74 parametrise each arc above, such that for all 0 <¢ <«

7 (t) = (t,0)
Y2(t) = (1)
v3(t) = (m —t,m)
Y4(t) = (0,7 — )

™

F(s) - ds = /0 " ((cos(mt), sin(wt)), (0, 1))dt = /0 " sin(rt)dt = {—icos(wt)}

0

Finally, we have

4

1 1

f(s)-ds= Z/ f(s)-ds=m+ = — =(cos(n?) + sin(n?)).
v =177 T T

14.9. Integral

(1) Show that for all § € R, we have

1 1
cos(f) sin®(0) = 3 sin(460) + 1 sin(20).

(2) Compute the integral
/ 22z drdydz,
B3

+

where Bi C R? is the upper half-ball

B =R*N{(z,y,2) : 2* +y* + 2% < 1,2 > 0}.

Solution.

(1) We have by Euler’s formula

0 4 =it o310 _ 3,00 | go—i0 _ ,—3if
cos(#) sin®(0) = c +26 c c Tt 8'6 ¢
—8&i

I N Y 3i0 340
T (e —e M —2e7 + 2e ))
Lsin(40) + L sin(20)
= ——S1n — S1n .
8 4
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(2) Recall that spherical coordinates are given on R\ {0} by
F:R% x [0,27) x [0,7) — R?
(r,0, ) — (rcos(0) sin(yp), rsin(@) sin(p), r cos(p)).

As we want to parametrise BY N {(z,y,2) : z > 0}, this imposes 0 < r < 1 and

™

rcos(¢) > 0, or equivalently 0 < ¢ < 7. Recall, (or compute) that the Jacobian
determinant admits the following expression

Jac F(r,0, ) = | det D2F(r,0,0)| = 12| sin(p)] = 1?sin(p),

where we used that sin(¢) > 0 for 0 < ¢ < g Therefore, the change of formula

(neglecting zero measure subsets) and Fubini yield

/B 22z dadydz —/ /%/ 12 cos?(0) sin?(p) x 7 cos() x 2 sin(p) drdfdy
= (/0 r5d7‘> </027r 0082(9)d¢9> (/Og cos(y) sin3(<p)dcp> .

Now we trivially have

1 2m 2w
/ rodr = }, / cos?(0)dh = / (HCOS(%)) df =,
0 6 0 0 2

while
bl , 1. 31
/ cos() sin®(p)dp = [4 sm4(g0)] =7
0 0
Finally, we deduce that
1 1 us
2
drdydz = = - =—.
/ngz AR = G X T T

+

Notice that it checks with (1) as

™

/05 (_; cos(40) + isin(29)> db = {—; COS(2(9):| = i

14.10. Epicycloids

Let 7 > 0 and p € N\ {0}, and let v : [0, 27] — R? be the closed curve given by the parametric
equation

Y(0) = (r ((p+ 1) cos(8) — cos((p+1)0)) , 7 ((p+ 1) sin(0) —sin ((p + 1)0))) -
(1) Show that for all 6 € [0, 27], we have

cos(0) cos((p + 1)0) + sin(0) sin((p + 1)0) = cos(ph)
(2) Compute the length of v([0,27]) C R? which is given by

27
Length(1) = [ ' (0)]av.
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(3) Compute the area of the compact region delimited by the closed curve ([0, 27]).
Solution.

(1) We have for all ay, as,b1,by € C
(a1 + ag)(bl + bg) — (a1 — ag)(bl — bg) = 2(a1b2 + agbl),

so the Euler formulas imply with a; = €, ay = e, by = ! @+D0 py = ¢=i(PTDI that
cos(0) cos((p + 1)0) + sin(0) sin((p + 1)0) = i X 2 (eipe + e_ip9> = cos(ph).
(2) We first compute
Y @) =1 ((p +1)%sin®(0) + (p+ 1)*sin®((p + 1)) — 2(p + 1)*sin(6) sin((p + 1)6)

+ (p+1)%cos®(0) + (p+ 1)% cos®((p + 1)8) — 2(p + 1)% cos(h) cos((p + 1)9))

2(p + 1)%r? (1 — cos(#) cos((p + 1)0) — sin(0) sin((p + 1)0))
=2(p+1)*r% (1 — cos(ph)).

Therefore, the duplication formula cos(2t) = 1 — 2sin?(t) implies that
2m 2m
Length :/ '(0)|d0 = V2 —|—1r/ \/1 — cos(pf)df
gth(v) = | W (O)] (p+Dr | (p0)

2
=2(p+ 1)7"/ sin (p@) ‘ do
0 2
=8(p+ 1)r,

where we used by symmetry

2w 92 [P 2 T
/ sin (‘”9> ’ do = 7/ |sin(t)]dt = > x p/ sin()dt = 4.
0 pJo p 0

2
3) Let Q, be the given domain. We have by the Green’s formula
P

Area(Q,) = [y(—y,O) -d§

= (p+ 1)r? /027r (—(p+ 1) sin(#) + sin((p + 1)0)) (—sin(#) + sin((p + 1)0)) do

= (p+1)r? /027r ((p+1)sin?(0) = (p +2) sin(0) sin((p + 1)0) + sin*((p + 1)6) ) df
=7(p+1)(p+2)r

where we used

sin(f) sin((p + 1)0) = % (cos(pf) — cos((p +2)0))

2r 1 27 (p+1) 2m
/ sin?((p + 1)0)df = 7/ sin?(s)ds = / sin?(s)ds = 7
0 p+1Jo 0

and trivial symmetry.

Remark: For the cardioid (p = 1), we find a length of 16r and area 6772, and for the
nephroid (p = 2), we find a length of 24r and area 12772, which checks with known formulas.
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