D-MAVT	Prof. F. Da Lio	
D-MATL	ETH Zürich	
	Analysis III	Autumn 2019

Serie 7

You need to know: convergence of Fourier series, applications to computation of numerical series.

Remark: In the following 'Fourier series' always means the real Fourier series of a function. Otherwise we will always specify 'complex Fourier series'.

1. Let $f(x)$ be the 2L-periodic extension of x, from the interval $[-L, L)$, as in Exercise 2. of Serie 6. The Fourier series is

$$
f(x) \sim \sum_{n=1}^{+\infty}(-1)^{n+1} \frac{2 L}{\pi n} \sin \left(\frac{n \pi}{L} x\right) .
$$

Use this to calculate:

$$
\sum_{k=0}^{+\infty} \frac{(-1)^{k}}{2 k+1}=?
$$

2. Let $f(x)$ be the $2 L$-periodic extension of x^{2} from the interval $[-L, L)$.
a) Compute its Fourier series.
b) The Riemann zeta function is the function

$$
\zeta(s):=\sum_{n=1}^{+\infty} \frac{1}{\mathfrak{n}^{s}}, \quad \text { for } s \in \mathbb{C}, \mathfrak{\Re e}(s)>1 .
$$

Use the previous Fourier series to find the value of the Riemann zeta function in $s=2$:

$$
\zeta(2)=\sum_{n=1}^{+\infty} \frac{1}{n^{2}}=?
$$

3. For $a>0$, consider the function $\cosh (a x)$ on the interval $[-\pi, \pi)$ and extend it on all \mathbb{R} to a function of period 2π.
a) Compute its complex Fourier series.
b) Use this result to find the value of the following series:

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n}}{n^{2}+a^{2}}=?
$$

4. The function $f(x)=\left|\cos \left(\frac{x}{2}\right)\right|$ is periodic of period 2π.
a) Compute its Fourier series.
b) Use this result to find the value of the following series:

$$
\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4 n^{2}-1}=?
$$

Hand in by: Thursday 7 November 2019.

