Analysis III

Prof. F. Da Lio ETH Zürich Autumn 2019

(stefano.dalesio@math.ethz.ch)

Solutions Serie 11

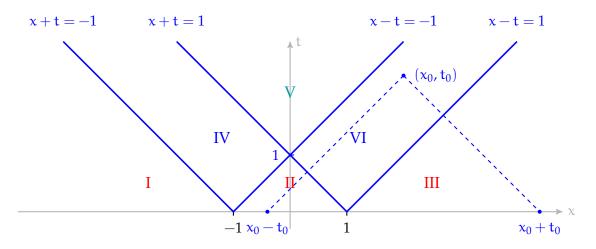
1. (Graphical exercise on the domain of dependence / region of influence)

Let u(x, t) be the solution of the problem

$$\begin{cases} u_{tt} = u_{xx}, & x \in \mathbb{R}, \ t > 0 \\ u(x,0) = f(x) = \begin{cases} 1, & |x| \leq 1 \\ 0, & |x| > 1 \end{cases} & x \in \mathbb{R} \\ u_t(x,0) = 0, & x \in \mathbb{R} \end{cases}$$

a) Draw the characteristic lines as in the picture at pag. 59 of the Lecture notes for the interval [a, b] = [-1, 1]. You should have divided the upper-half plane (x, t) ∈ ℝ × [0, +∞) into the six regions denoted in the picture by I,II,III,IV,V,VI. *Solution:*

Here the propagation speed is c = 1, so the characteristic lines have the form $\{x \pm t = constant\}$.



In the picture we drew the required characteristic lines passing through the extremal points of the interval [-1, 1], dividing the upper-half plane in the six regions. We also drew an example of how to use this: from any point (x_0, t_0)

we have to draw the characteristic lines from this point and we intersect the xaxis in the two points $x_0 \pm t_0$. The solution in the point (x_0, t_0) is then given by averaging the initial function f(x) in this two points:

$$u(x_0, t_0) = \frac{1}{2} (f(x_0 - t_0) + f(x_0 + t_0))$$

In the example we drew in this picture the point (x_0, t_0) belongs to the region VI, which means that the contribution from the point $x_0 + t_0$ is zero because it is outside the interval [-1, 1]. In our case this means that for each points in the region VI

$$u(x_0, t_0) = \frac{1}{2}f(x_0 - t_0) = \frac{1}{2} \cdot 1 = \frac{1}{2}.$$

b) In this case in each of these regions, and on each of the characteristics line, the solution is equal to a constant. Find all these constants and write them down in the regions and on the lines.

Solution:

We have already partially answered to this question by observing that u(x, t) is constantly equal to $\frac{1}{2}$ in the region VI, and explaining how we obtained this.

The same thing is true in the region IV because we have only the contribute from $x_0 + t_0$.

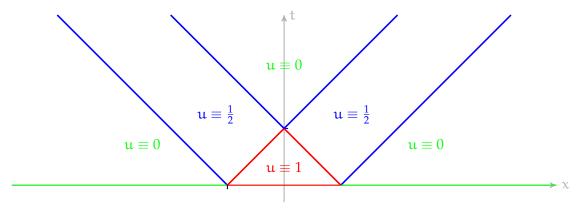
In the regions I,III,V instead the solution is zero because we don't intersect the interval [-1, 1] with the points $x_0 \pm t_0$.

Finally in the region II the solution is equal to 1.

Further discussion is required for the lines in between the regions: as an example along the line x - t = -1 the solution is equal to 1 in the segment going from x = -1 to x = 0 and after it is equal to $\frac{1}{2}$.

We draw in a new graph these results, and in order to avoid confusion we don't report again the labels of the regions and the numbers ± 1 on the axis.

We assign a colour to each of the three possible values of u: red to 1, blue to $\frac{1}{2}$ and green to 0.



Look at the next page!

c) In this way you have found graphically the solution for each (x, t). What are the maximum and minimum values?

Solution:

From the picture it is clear that:

•
$$\max_{(x,t)\in\mathbb{R}\times[0,+\infty)} u(x,t) = 1$$

•
$$\min_{(x,t)\in\mathbb{R}\times[0,+\infty)} u(x,t) = 0$$

2. Let u(x, t) be the solution of the problem

$$\begin{cases} u_{tt} = u_{xx}, & x \in \mathbb{R}, \ t > 0 \\ u(x,0) = f(x) = \begin{cases} 1, & |x| \leq 1 \\ 0, & |x| > 1 \end{cases} & x \in \mathbb{R} \\ u_t(x,0) = g(x) = \begin{cases} 1, & |x| \leq 1 \\ 0, & |x| > 1 \end{cases} & x \in \mathbb{R} \end{cases}$$

a) Find the values $u(0, \frac{1}{2})$ and $u(\frac{3}{2}, \frac{1}{2})$.

Solution:

We use d'Alembert formula to obtain

$$\begin{split} \mathfrak{u}(0,\frac{1}{2}) &= \frac{1}{2} \left(f\left(\frac{1}{2}\right) + f\left(-\frac{1}{2}\right) \right) + \frac{1}{2} \int_{-\frac{1}{2}}^{\frac{1}{2}} g(s) \, \mathrm{d}s = \frac{1}{2} \left(1+1\right) + \frac{1}{2} \cdot 1 = \frac{3}{2} \\ \mathfrak{u}(\frac{3}{2},\frac{1}{2}) &= \frac{1}{2} \left(f\left(2\right) + f\left(1\right) \right) + \frac{1}{2} \int_{1}^{2} g(s) \, \mathrm{d}s = \frac{1}{2} \left(0+1\right) = \frac{1}{2} . \end{split}$$

b) Find, for each fixed $x \in \mathbb{R}$, the asymptotic limit

$$\lim_{t\to+\infty}\mathfrak{u}(x,t).$$

Solution:

Let's make a general observation: if f(x) has limits for $x \to \pm \infty$ (call these values $f(\pm \infty)$) and g(x) is integrable on \mathbb{R} , then the limit of the solution of the wave

equation u(x, t) can be computed as the sum of the three limits:

$$\lim_{t \to +\infty} u(x,t) = \lim_{t \to +\infty} \left(\frac{1}{2} \left(f(x+ct) + f(x-ct) \right) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds \right) =$$
$$= \frac{1}{2} \left(f(+\infty) + f(-\infty) \right) + \frac{1}{2c} \int_{-\infty}^{+\infty} g(s) \, ds.$$

Here c = 1, $f(\pm \infty) = 0$ and the integral of g(x) on \mathbb{R} is 2, therefore:

$$\lim_{t \to +\infty} u(x,t) = \frac{1}{2} \left(f(+\infty) + f(-\infty) \right) + \frac{1}{2} \int_{-\infty}^{+\infty} g(s) \, ds = \frac{1}{2} \left(0 + 0 \right) + \frac{1}{2} \cdot 2 = 1.$$

Important remark: The asymptotic limit we have computed in the previous exercise $\overline{\lim_{t \to +\infty} u(x, t)}$ was independent from the $x \in \mathbb{R}$ chosen. Indeed, as said before, this was because f and g were well-behaved, in the sense that f had limits for $x \to \pm \infty$ and g was integrable, so that one can compute the limit of

$$u(x,t) = \frac{1}{2}(f(x+ct) + f(x-ct)) + \frac{1}{2c} \int_{x-ct}^{x+ct} g(s) \, ds$$

by computing the sum of the limits of all summands. But *pay attention*: this is not always the case!

Easy example in which this doesn't work: just take c = 1 and f(x) = sin(x), while g(x) = 0. Then clearly f doesn't have limits at infinity, and u(x, t) will have limit for some x, but not for others:

$$\begin{cases} \lim_{t \to +\infty} \mathfrak{u}(0,t) = \lim_{t \to +\infty} \frac{1}{2}(\sin(t) - \sin(t)) = \lim_{t \to +\infty} 0 = 0, \\ \lim_{t \to +\infty} \mathfrak{u}(1,t) = \lim_{t \to +\infty} \frac{1}{2}(\sin(1+t) + \sin(1-t)) = \lim_{t \to +\infty} \sin(1)\cos(t) \quad \rightsquigarrow \quad \text{doesn't exist!} \end{cases}$$

More generally for each x and t

$$u(x,t) = \frac{1}{2}(\sin(x+t) + \sin(x-t)) = \cos(t)\sin(x)$$

and it will have limit for $t \to +\infty$ if and only if $x = k\pi$ with $k \in \mathbb{Z}$.

3. Find, via Fourier series, the solution of the 1-dimensional heat equation with the following initial condition:

$$\begin{cases} u_t = 4 \, u_{xx}, & x \in [0,1], \ t \ge 0 \\ u(0,t) = u(1,t) = 0, & t \ge 0 \\ u(x,0) = f(x), & x \in [0,1] \end{cases}$$

where

$$f(x) = \sin(\pi x) + \sin(5\pi x) + \sin(10\pi x).$$

Use the method of separation of variables from scratch, showing all the steps.

Solution:

With variables separated u(x, t) = F(x)G(t) the differential equation becomes:

$$F(\mathbf{x})\dot{\mathbf{G}}(\mathbf{t}) = 4F''(\mathbf{x})\mathbf{G}(\mathbf{t}),$$

which is convenient to rewrite as

$$\frac{F''(x)}{F(x)} = \frac{\dot{G}(t)}{4G(t)}$$

because it becomes clear that we are comparing a function of x with a function of t, and the only way that this equality might be true is that both these functions are equal and constant:

$$\frac{F''(x)}{F(x)} = \frac{G(t)}{4G(t)} = k, \qquad k \in \mathbb{R}.$$

The boundary conditions are

,

$$u(0,t) = F(0)G(t) = 0$$
 and $u(1,t) = F(1)G(t) = 0$ $\forall t \in [0,+\infty)$

which in order to be true, excluding the trivial solution $G(t) \equiv 0$, become:

$$F(0) = F(1) = 0.$$

In other words the initial PDE with boundary conditions becomes the system of coupled equations

$$\begin{cases} \mathsf{F}''(\mathbf{x}) = \mathsf{k}\mathsf{F}(\mathbf{x}),\\ \mathsf{F}(0) = \mathsf{F}(1) = 0, \end{cases} \quad \text{and} \quad \dot{\mathsf{G}}(\mathsf{t}) = 4\mathsf{k}\mathsf{G}(\mathsf{t}). \end{cases}$$

We first solve the system for F(x), distinguishing the cases of k positive, zero, or negative. For k > 0 the general solution of the ODE is

$$\mathsf{F}(\mathsf{x}) = \mathsf{C}_1 \mathrm{e}^{\sqrt{\mathsf{k}}\mathsf{x}} + \mathsf{C}_2 \mathrm{e}^{-\sqrt{\mathsf{k}}\mathsf{x}},$$

which is, however, <u>not</u> compatible with the boundary conditions, in the sense that the only solution of this form satisfying the boundary conditions is the trivial solution: $C_1 = C_2 = 0$. In fact

$$0 = F(0) = C_1 + C_2 \quad \Leftrightarrow \quad C_2 = -C_1 \quad \Longrightarrow \ F(x) = C_1 \left(e^{\sqrt{k}x} - e^{-\sqrt{k}x} \right)$$

but then imposing the other condition:

$$0 = F(1) = C_1 \left(e^{\sqrt{k}} - e^{-\sqrt{k}} \right) \quad \Leftrightarrow \quad \begin{array}{l} \text{either } C_1 = 0 \\ \text{or } e^{2\sqrt{k}} = 1 \end{array}$$

which implies $C_1 = 0$ (and consequently $C_2 = -C_1 = 0$) because $2\sqrt{k} \neq 0$ and therefore its exponential is not 1.

For k = 0 the general solution is $F(x) = C_1 x + C_2$ which is also not compatible with boundary conditions unless $C_1 = C_2 = 0$. In fact

$$0 = F(0) = C_2 \implies F(x) = C_1 x$$

and then

$$0 = F(1) = C_1.$$

It remains the case k < 0, in which its convenient to write it in the form $k = -p^2$ for positive real number p, and general solutions of $F'' = -p^2F$ are:

$$F(x) = A\cos(px) + B\sin(px).$$

F(0) = 0 if and only if A = 0. F(1) = 0 if and only if $B\sin(p) = 0$, so if we want nontrivial solutions $B \neq 0$, we need to have

$$p = n\pi$$

for some integer $n \geqslant 1.$ Conclusion: we have a nontrivial solution for each $n \geqslant 1,$ $k=k_n=-n^2\pi^2:$

$$F_{n}(x) = B_{n} \sin(n\pi x)$$

The corresponding equation for G(t) is

$$\dot{G} = -4n^2\pi^2G$$

which has general solution

$$G_n(t) = C_n e^{-4n^2\pi^2 t}$$

The conclusion is that for every $n \ge 1$ we have a solution

$$u_n(x,t) = F_n(x)G_n(t) = B_n \sin(n\pi x)e^{-4n^2\pi^2 t}$$

and by the superposition principle:

$$u(x,t) = \sum_{n=1}^{+\infty} B_n \sin(n\pi x) e^{-4n^2\pi^2 t}$$

where the coefficients B_n are determined by the initial condition

$$f(x) = u(x, 0) = \sum_{n=1}^{+\infty} B_n \sin(n\pi x).$$

Look at the next page!

This case is particularly easy because f(x) is already expressed as a linear combination of these functions and there is no need to compute any integral to get

$$B_n = \begin{cases} 1, & n = 1, 5, 10\\ 0, & \text{otherwise.} \end{cases}$$

Finally, the solution will be

$$u(x,t) = \sin(\pi x)e^{-4\pi^2 t} + \sin(5\pi x)e^{-100\pi^2 t} + \sin(10\pi x)e^{-400\pi^2 t}$$

4. An aluminium bar of length L = 1(m) has thermal diffusivity of (around)¹

$$c^2 = 0.0001 \left(\frac{m^2}{\mathrm{sec}}\right) = 10^{-4} \left(\frac{m^2}{\mathrm{sec}}\right).$$

It has initial temperature given by $u(x, 0) = f(x) = 100 \sin(\pi x) (^{\circ}C)$, and its ends are kept at a constant 0°C temperature. Find the first time t* for which the whole bar will have temperature $\leq 30^{\circ}C$.

In mathematical terms, solve

$$\begin{cases} u_t = 10^{-4} u_{xx}, \\ u(0,t) = u(1,t) = 0, & t \ge 0 \\ u(x,0) = 100 \sin(\pi x), & 0 \le x \le 1. \end{cases}$$

and find the smallest t* for which

$$\max_{\mathbf{x}\in[0,1]}\mathfrak{u}(\mathbf{x},\mathbf{t}^*)\leqslant 30.$$

You can use the formula from the Lecture notes (pag. 61).

Solution:

The parameters are length L = 1, thermal diffusivity $c^2 = 10^{-4}$ and consequently

$$\lambda_n^2 = \frac{c^2 n^2 \pi^2}{L^2} = 10^{-4} n^2 \pi^2.$$

The solution is

$$u(x,t) = \sum_{n=1}^{+\infty} B_n \sin(n\pi x) e^{-\lambda_n^2 t}$$

and

$$f(x) = u(x, 0) = \sum_{n=1}^{+\infty} B_n \sin(n\pi x)$$

 $^1 we are approximating the standard value which would be <math display="inline">c^2 \approx 0.000097 m^2/sec$ to make computations easier.

so that the only nontrivial coefficient will be $B_1 = 100$. The solution is explicitely given by

$$u(x,t) = 100\sin(\pi x)e^{-10^{-4}\pi^2 t}$$

For each fixed time t ≥ 0 , it is a multiple of $sin(\pi x)$, therefore its maximum will be reached in x = 1/2 with value

$$M_{t} := \max_{x \in [0,1]} u(x,t) = u\left(\frac{1}{2},t\right) = 100 \sin\left(\frac{\pi}{2}\right) e^{-10^{-4}\pi^{2}t} = 100 e^{-10^{-4}\pi^{2}t}.$$

This is a decreasing function of t, so that the required value t^{*} for which the bar will have temperature $\leq 30^{\circ}$ C is given by imposing

$$M_{t^*} = 30 \quad \Leftrightarrow \quad 100e^{-10^{-4}\pi^2 t^*} = 30 \quad \Leftrightarrow \quad t^* = \frac{10^4}{\pi^2} \ln\left(\frac{10}{3}\right)$$
$$\left(\approx 1219.88 \text{ sec} = 20 \text{ min } 19.88 \text{ sec}\right)$$