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Solutions Serie 11

1. (Graphical exercise on the domain of dependence / region of influence)

Let u(x, t) be the solution of the problem

Uit = Uxx, xeR, t>0
1 <1

w(x,0) = fx) = 4 ¥ xeR
0, |x|>1

Ut(X,O):O. XER

a) Draw the characteristic lines as in the picture at pag. 59 of the Lecture notes
for the interval [a,b] = [—1,1]. You should have divided the upper-half plane
(x,t) € R x [0,400) into the six regions denoted in the picture by LILIILIV,V,VL

Solution:

Here the propagation speed is ¢ = 1, so the characteristic lines have the form
{x £t = constant}.

x+t=-1 x+t=1 x—t=-1 x—t=1

—1x0—to 1 X0 + 1o

In the picture we drew the required characteristic lines passing through the
extremal points of the interval [—1,1], dividing the upper-half plane in the six
regions. We also drew an example of how to use this: from any point (xo, to)
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b)

we have to draw the characteristic lines from this point and we intersect the x-
axis in the two points x¢ =+ to. The solution in the point (xo, to) is then given by
averaging the initial function f(x) in this two points:

1
u(xo, to) = 5 (f(xo —to) + f(x0 + to))
In the example we drew in this picture the point (xo, to) belongs to the region
VI, which means that the contribution from the point xg + t¢ is zero because it
is outside the interval [—1,1]. In our case this means that for each points in the
region VI

1 1 1
u(xp, to) = Ef(xo —tg) = > 1= 5

In this case in each of these regions, and on each of the characteristics line, the
solution is equal to a constant. Find all these constants and write them down in
the regions and on the lines.

Solution:

We have already partially answered to this question by observing that u(x, t) is
constantly equal to 3 in the region VI, and explaining how we obtained this.

The same thing is true in the region IV because we have only the contribute from
X0 + to.

In the regions LIILV instead the solution is zero because we don’t intersect the
interval [—1, 1] with the points x¢ = to.

Finally in the region II the solution is equal to 1.

Further discussion is required for the lines in between the regions: as an example

along the line x —t = —1 the solution is equal to 1 in the segment going from
x = —1 to x = 0 and after it is equal to 3.

We draw in a new graph these results, and in order to avoid confusion we don’t
report again the labels of the regions and the numbers +1 on the axis.

We assign a colour to each of the three possible values of u: red to 1, blue to %
and green to 0.
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¢) In this way you have found graphically the solution for each (x,t). What are the
maximum and minimum values?

Solution:

From the picture it is clear that:

. max u(x,t) =1
(x,t)ER X [0,400)

) min u(x,t) =0
(x,t)ER X [0,4+00)

2. Let u(x, t) be the solution of the problem

Ut = Uxx, xeR, t>0
1, Kl<1
u(x,0) = f(x) = X xeR
0, |x|>1
1, <1
w(x0) =g =47 MST R
0. [xI>1

a) Find the values u(0, %) and u(%, %).
Solution:

We use d’Alembert formula to obtain

1
2
W03 =5 (B +F(3)+5 [ eloras=ga+1+71=3
=
1 12 1 1
u(3, ) :z(f(2)+f(1))+zjg(s) as=2(0+1) = 1.
1

b) Find, for each fixed x € R, the asymptotic limit

lim u(x,t).
t—+o0

Solution:

Let’s make a general observation: if f(x) has limits for x — $-oo (call these values
f(£o0)) and g(x) is integrable on IR, then the limit of the solution of the wave
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equation u(x,t) can be computed as the sum of the three limits:

x+ct
. . 1 1
tEToou(x,t)—tErfoo E(f(x—l—ct)—i—f(x—ct))—i-i J g(s)ds | =
x—ct
+o0o
— 5 [flo0) + fl=co)) + 5 | gls)d
=5 00 ) % g(s) ds.
—0

Here ¢ =1, f(£o00) = 0 and the integral of g(x) on R is 2, therefore:

+o00

(f(+oo)+f(—oo))+% J g(s)ds:%(0+0)+%-2:1.

—0o0

. 1
i et =

Important remark: The asymptotic limit we have computed in the previous exercise

thrf u(x,t) was independent from the x € R chosen. Indeed, as said before, this
—+00

was because f and g were well-behaved, in the sense that f had limits for x — +oo
and g was integrable, so that one can compute the limit of

x+ct
u(x,t):%(f(x+ct)+f(x—ct))+21—c J g(s)ds

x—ct

by computing the sum of the limits of all summands. But pay attention: this is not
always the case!

Easy example in which this doesn’t work: just take ¢ =1 and f(x) = sin(x), while g(x) =
0. Then clearly f doesn’t have limits at infinity, and u(x, t) will have limit for some x,
but not for others:

t—+o0 t—+o00 t——+o0

lim u(1l,t) = lim %(sin(l +1t)+sin(l—t)) = lim sin(1)cos(t) ~» doesn’t exist!
t—+o0 t—+o0 t—+o0

{ lim 1(0,t) = lim I(sin(t) —sin(t)) = lim 0=0,

More generally for each x and t
1
u(x, t) = 5 (sin(x +t) +sin(x — t)) = cos(t) sin(x)

and it will have limit for t — +o0 if and only if x = k7t with k € Z.
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3. Find, via Fourier series, the solution of the 1-dimensional heat equation with the
following initial condition:

ut:4uXX/ X € [O/]-}/ t>o
u(0,t) =u(1,t) =0, t>0
u(x,0) = f(x), x € [0,1]

where
f(x) = sin(7tx) + sin(57tx) + sin(107tx).

Use the method of separation of variables from scratch, showing all the steps.

Solution:

With variables separated u(x,t) = F(x)G(t) the differential equation becomes:
F(x)G(t) = 4F" (x)G(t),

which is convenient to rewrite as
F/(x)  G(t)

F(x) 4G(t)

because it becomes clear that we are comparing a function of x with a function of
t, and the only way that this equality might be true is that both these functions are
equal and constant:

F'(x) _ G(t) _
) “agy N keR

The boundary conditions are

u(0,t) =F0)G(t) =0 and u(l,t)=F1)G(t)=0 Vte [0,+00)
which in order to be true, excluding the trivial solution G(t) = 0, become:
F(0) =F(1) =0.
In other words the initial PDE with boundary conditions becomes the system of

coupled equations

and G(t) =4kG(t).

F'(x) = kF(x),
F(0) =F(1) =0,

We first solve the system for F(x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F(x) = CreV™ 4 Coe VI,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 =C, =0. In fact

0=F0)=C,+C, & Cr=-C =— Fx)=0C; (e\/EX —e_‘/E")

5 Please turn!



but then imposing the other condition:

== () et

which implies C; = 0 (and consequently C; = —C; = 0) because 2vk # 0 and
therefore its exponential is not 1.

For k = 0 the general solution is F(x) = Cyx + C2 which is also not compatible with
boundary conditions unless C; = C; = 0. In fact

0=F0)=C, = F(x)=0Cx

and then

0="FQ1)=C.
It remains the case k < 0, in which its convenient to write it in the form k = —p? for
positive real number p, and general solutions of F”/ = —p?F are:

F(x) = A cos(px) + B sin(px).

F(0) = 0 if and only if A = 0. F(1) = 0 if and only if Bsin(p) = 0, so if we want
nontrivial solutions B # 0, we need to have

p=nn
for some integer n > 1. Conclusion: we have a nontrivial solution for each n > 1,

k = kn = —n27%:
Fn(x) = By sin (nmx)

The corresponding equation for G(t) is
G = —4n’1°G

which has general solution
Gn(t) — Cnef4n2ﬂ2t

The conclusion is that for every n > 1 we have a solution

Un(%,t) = Fr(x)Gn(t) = By sin(nmx)e 4t

and by the superposition principle:
+00 )
u(x, t) = Z By sin(nmx)e 4t
n=1
where the coefficients By, are determined by the initial condition

+o00
f(x) =u(x,0) = Z B, sin(n7mx).
n=1
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This case is particularly easy because f(x) is already expressed as a linear combina-
tion of these functions and there is no need to compute any integral to get

1, n=1510
Bn = .
0, otherwise.

Finally, the solution will be

u(x, t) = sin(mx)e 4t + sin(5mx)e 1007t 4 gin(107mx)e 4007t

4. An aluminium bar of length L = 1(m) has thermal diffusivity of (aroundﬂ

2 2
2 = 0.0001 <m> —10~* <m) .
secC sec

It has initial temperature given by u(x,0) = f(x) = 100sin(7x) (°C), and its ends are
kept at a constant 0°C temperature. Find the first time t* for which the whole bar
will have temperature < 30°C.

In mathematical terms, solve

uy = 10 4y,
u(0,t) =u(1,t) =0, t=>
u(x,0) =100sin(7x), 0 <

and find the smallest t* for which

max u(x,t*) < 30.
x€[0,1]

You can use the formula from the Lecture notes (pag. 61).
Solution:

The parameters are length L = 1, thermal diffusivity ¢ = 10~* and consequently
212,72
cnér _
N2 = Tz = 10422,
The solution is

“+o00o
. _\2
u(x, t) = Z By, sin(nmx)e nt
n=1

and

+o0o
f(x) =u(x,0) = Z B, sin(nmx)
n=1

Iwe are approximating the standard value which would be ¢? ~ 0.000097m? /sec to make computations

easier.
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so that the only nontrivial coefficient will be B; = 100. The solution is explicitely
given by

u(x, t) = 100 sin(mx)e 10",
For each fixed time t > 0, it is a multiple of sin(7rx), therefore its maximum will be
reached in x = 1/2 with value

1 . )
M, := max u(x,t) =u( =,t) = 100sin (E) e~ 1074t _ 10pe—10*rt
x€[0,1] 2 2

This is a decreasing function of t, so that the required value t* for which the bar will
have temperature < 30°C is given by imposing

o 104 1
My =30 < 100e 1077t —30 o = 10 (;)

( ~ 1219.88 sec = 20 min 19.88 sec)



