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Solutions Serie 11

1. (Graphical exercise on the domain of dependence / region of influence)

Let u(x, t) be the solution of the problem
utt = uxx, x ∈ R, t > 0

u(x, 0) = f(x) =

{
1, |x| 6 1
0, |x| > 1

x ∈ R

ut(x, 0) = 0. x ∈ R

a) Draw the characteristic lines as in the picture at pag. 59 of the Lecture notes
for the interval [a,b] = [−1, 1]. You should have divided the upper-half plane
(x, t) ∈ R× [0,+∞) into the six regions denoted in the picture by I,II,III,IV,V,VI.

Solution:

Here the propagation speed is c = 1, so the characteristic lines have the form
{x± t = constant}.

x

t

x− t = −1x+ t = 1 x− t = 1x+ t = −1

1

I II III

IV VI

V

−1

1

(x0, t0)

x0 − t0 x0 + t0

In the picture we drew the required characteristic lines passing through the
extremal points of the interval [−1, 1], dividing the upper-half plane in the six
regions. We also drew an example of how to use this: from any point (x0, t0)
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we have to draw the characteristic lines from this point and we intersect the x-
axis in the two points x0 ± t0. The solution in the point (x0, t0) is then given by
averaging the initial function f(x) in this two points:

u(x0, t0) =
1
2
(
f(x0 − t0) + f(x0 + t0)

)
In the example we drew in this picture the point (x0, t0) belongs to the region
VI, which means that the contribution from the point x0 + t0 is zero because it
is outside the interval [−1, 1]. In our case this means that for each points in the
region VI

u(x0, t0) =
1
2
f(x0 − t0) =

1
2
· 1 =

1
2

.

b) In this case in each of these regions, and on each of the characteristics line, the
solution is equal to a constant. Find all these constants and write them down in
the regions and on the lines.

Solution:

We have already partially answered to this question by observing that u(x, t) is
constantly equal to 1

2 in the region VI, and explaining how we obtained this.

The same thing is true in the region IV because we have only the contribute from
x0 + t0.

In the regions I,III,V instead the solution is zero because we don’t intersect the
interval [−1, 1] with the points x0 ± t0.

Finally in the region II the solution is equal to 1.

Further discussion is required for the lines in between the regions: as an example
along the line x− t = −1 the solution is equal to 1 in the segment going from
x = −1 to x = 0 and after it is equal to 1

2 .

We draw in a new graph these results, and in order to avoid confusion we don’t
report again the labels of the regions and the numbers ±1 on the axis.

We assign a colour to each of the three possible values of u: red to 1, blue to 1
2

and green to 0.

x

t

u ≡ 0

u ≡ 1

u ≡ 0

u ≡ 1
2 u ≡ 1

2

u ≡ 0
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c) In this way you have found graphically the solution for each (x, t). What are the
maximum and minimum values?

Solution:

From the picture it is clear that:

• max
(x,t)∈R×[0,+∞)

u(x, t) = 1

• min
(x,t)∈R×[0,+∞)

u(x, t) = 0

2. Let u(x, t) be the solution of the problem

utt = uxx, x ∈ R, t > 0

u(x, 0) = f(x) =

{
1, |x| 6 1
0, |x| > 1

x ∈ R

ut(x, 0) = g(x) =

{
1, |x| 6 1
0. |x| > 1

x ∈ R

a) Find the values u(0, 1
2) and u( 3

2 , 1
2).

Solution:

We use d’Alembert formula to obtain

u(0, 1
2) =

1
2
(
f
(1

2

)
+ f
(
−1

2

))
+

1
2

1
2∫

−
1
2

g(s)ds =
1
2
(1 + 1) +

1
2
· 1 =

3
2

.

u( 3
2 , 1

2) =
1
2
(f (2) + f (1)) +

1
2

2∫
1

g(s)ds =
1
2
(0 + 1) =

1
2

.

b) Find, for each fixed x ∈ R, the asymptotic limit

lim
t→+∞u(x, t).

Solution:

Let’s make a general observation: if f(x) has limits for x→ ±∞ (call these values
f(±∞)) and g(x) is integrable on R, then the limit of the solution of the wave
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equation u(x, t) can be computed as the sum of the three limits:

lim
t→+∞u(x, t) = lim

t→+∞
1

2
(f(x+ ct) + f(x− ct)) +

1
2c

x+ct∫
x−ct

g(s)ds

 =

=
1
2
(f(+∞) + f(−∞)) +

1
2c

+∞∫
−∞

g(s)ds.

Here c = 1, f(±∞) = 0 and the integral of g(x) on R is 2, therefore:

lim
t→+∞u(x, t) =

1
2
(f(+∞) + f(−∞)) +

1
2

+∞∫
−∞

g(s)ds =
1
2
(0 + 0) +

1
2
· 2 = 1.

Important remark: The asymptotic limit we have computed in the previous exercise
lim
t→+∞u(x, t) was independent from the x ∈ R chosen. Indeed, as said before, this

was because f and g were well-behaved, in the sense that f had limits for x → ±∞
and g was integrable, so that one can compute the limit of

u(x, t) =
1
2
(f(x+ ct) + f(x− ct)) +

1
2c

x+ct∫
x−ct

g(s)ds

by computing the sum of the limits of all summands. But pay attention: this is not
always the case!
Easy example in which this doesn’t work: just take c = 1 and f(x) = sin(x), while g(x) =
0. Then clearly f doesn’t have limits at infinity, and u(x, t) will have limit for some x,
but not for others: lim
t→+∞u(0, t) = lim

t→+∞ 1
2(sin(t) − sin(t)) = lim

t→+∞ 0 = 0,

lim
t→+∞u(1, t) = lim

t→+∞ 1
2(sin(1 + t) + sin(1 − t)) = lim

t→+∞ sin(1) cos(t)  doesn’t exist!

More generally for each x and t

u(x, t) =
1
2
(sin(x+ t) + sin(x− t)) = cos(t) sin(x)

and it will have limit for t→ +∞ if and only if x = kπ with k ∈ Z.
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3. Find, via Fourier series, the solution of the 1-dimensional heat equation with the
following initial condition:

ut = 4uxx, x ∈ [0, 1], t > 0
u(0, t) = u(1, t) = 0, t > 0
u(x, 0) = f(x), x ∈ [0, 1]

where
f(x) = sin(πx) + sin(5πx) + sin(10πx).

Use the method of separation of variables from scratch, showing all the steps.

Solution:

With variables separated u(x, t) = F(x)G(t) the differential equation becomes:

F(x)Ġ(t) = 4F ′′(x)G(t),

which is convenient to rewrite as

F ′′(x)

F(x)
=
Ġ(t)

4G(t)

because it becomes clear that we are comparing a function of x with a function of
t, and the only way that this equality might be true is that both these functions are
equal and constant:

F ′′(x)

F(x)
=
Ġ(t)

4G(t)
= k, k ∈ R.

The boundary conditions are

u(0, t) = F(0)G(t) = 0 and u(1, t) = F(1)G(t) = 0 ∀t ∈ [0,+∞)

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F(0) = F(1) = 0.

In other words the initial PDE with boundary conditions becomes the system of
coupled equations {

F ′′(x) = kF(x),
F(0) = F(1) = 0,

and Ġ(t) = 4kG(t).

We first solve the system for F(x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F(x) = C1e
√
kx +C2e−

√
kx,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 = C2 = 0. In fact

0 = F(0) = C1 +C2 ⇔ C2 = −C1 =⇒ F(x) = C1

(
e
√
kx − e−

√
kx
)

5 Please turn!



but then imposing the other condition:

0 = F(1) = C1

(
e
√
k − e−

√
k
)
⇔ either C1 = 0

or e2
√
k = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
k 6= 0 and

therefore its exponential is not 1.

For k = 0 the general solution is F(x) = C1x+C2 which is also not compatible with
boundary conditions unless C1 = C2 = 0. In fact

0 = F(0) = C2 =⇒ F(x) = C1x

and then
0 = F(1) = C1.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for
positive real number p, and general solutions of F ′′ = −p2F are:

F(x) = A cos(px) +B sin(px).

F(0) = 0 if and only if A = 0. F(1) = 0 if and only if B sin(p) = 0, so if we want
nontrivial solutions B 6= 0, we need to have

p = nπ

for some integer n > 1. Conclusion: we have a nontrivial solution for each n > 1,
k = kn = −n2π2:

Fn(x) = Bn sin (nπx)

The corresponding equation for G(t) is

Ġ = −4n2π2G

which has general solution
Gn(t) = Cne−4n2π2t

The conclusion is that for every n > 1 we have a solution

un(x, t) = Fn(x)Gn(t) = Bn sin(nπx)e−4n2π2t

and by the superposition principle:

u(x, t) =
+∞∑
n=1

Bn sin(nπx)e−4n2π2t

where the coefficients Bn are determined by the initial condition

f(x) = u(x, 0) =
+∞∑
n=1

Bn sin(nπx).
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This case is particularly easy because f(x) is already expressed as a linear combina-
tion of these functions and there is no need to compute any integral to get

Bn =

{
1, n = 1, 5, 10
0, otherwise.

Finally, the solution will be

u(x, t) = sin(πx)e−4π2t + sin(5πx)e−100π2t + sin(10πx)e−400π2t

4. An aluminium bar of length L = 1(m) has thermal diffusivity of (around)1

c2 = 0.0001
(

m2

sec

)
= 10−4

(
m2

sec

)
.

It has initial temperature given by u(x, 0) = f(x) = 100 sin(πx) (◦C), and its ends are
kept at a constant 0◦C temperature. Find the first time t∗ for which the whole bar
will have temperature 6 30◦C.
In mathematical terms, solve

ut = 10−4uxx,
u(0, t) = u(1, t) = 0, t > 0
u(x, 0) = 100 sin(πx), 0 6 x 6 1.

and find the smallest t∗ for which

max
x∈[0,1]

u(x, t∗) 6 30.

You can use the formula from the Lecture notes (pag. 61).

Solution:

The parameters are length L = 1, thermal diffusivity c2 = 10−4 and consequently

λ2
n =

c2n2π2

L2 = 10−4n2π2.

The solution is

u(x, t) =
+∞∑
n=1

Bn sin(nπx)e−λ
2
nt

and

f(x) = u(x, 0) =
+∞∑
n=1

Bn sin(nπx)

1we are approximating the standard value which would be c2 ≈ 0.000097m2/sec to make computations
easier.

7 Please turn!

https://metaphor.ethz.ch/x/2019/hs/401-0363-10L/ex/AnalysisIII-MAVTMATL.pdf


so that the only nontrivial coefficient will be B1 = 100. The solution is explicitely
given by

u(x, t) = 100 sin(πx)e−10−4π2t.

For each fixed time t > 0, it is a multiple of sin(πx), therefore its maximum will be
reached in x = 1/2 with value

Mt := max
x∈[0,1]

u(x, t) = u
(

1
2

, t
)

= 100 sin
(π

2

)
e−10−4π2t = 100e−10−4π2t.

This is a decreasing function of t, so that the required value t∗ for which the bar will
have temperature 6 30◦C is given by imposing

Mt∗ = 30 ⇔ 100e−10−4π2t∗ = 30 ⇔ t∗ =
104

π2 ln
(

10
3

)
(
≈ 1219.88 sec = 20 min 19.88 sec

)
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