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Solutions Serie 6

f(x) = {

a) Extend f to an even function on the interval [—m, 7] and then finally to an even,
2m-periodic function on R and call this function fe.
Sketch the graph of f. and find its Fourier series.

1. Consider the function
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Solution:

The even extension f. is given, in the interval [—m, 7], by

period = 27t R .
T, —mn<x<—% < > fe(x)
x, 0<x<7% I I
7, FEXLT _'%T[ o _I% é m g.ﬂ'x
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The Fourier series is thus
3 28 1 . 2
LSy (-1 —Deos2ix) — =Y ———— cos((2j +1)x).
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b) Do the same for the odd, 27-periodic extensiorﬂ of f (call this f,).
Solution:

The odd extension f, is given, in the interval (—m, 7|, by

period = 2n
1 A 1
—3, TM<X< -3 < g
7T

folx) =4 —3 <x<0 / ¢ 27 ¢ fo(x)
o(x) =

X, 0<x< 7% \ |

7T 7T T : T T : T > X

27 2 SXST 3. —m _X TooT

—57t 2 2

To be precise, we can’t extend f to an odd, periodic function everywhere because f(7) = 7 is not zero.
The problematic points are 7t 4 2k, k € Z. Let’s assign to these points the value 7.
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Therefore here the a,, coefficients will be all zero, while

fo(x)sin(nx) dx = iJfO(x) sin(nx) dx =
0
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and the Fourier series is

+001,(2, T 2 (1) 1 (9511
_jzlzjsﬂl ]X)'Fj;](wr -1) +2j+1>51n(( j+1)x).

2. Find the Fourier series of the 2L-periodic extension of

f(x)=x, xel[-L1L)
considered in Exercise 5.a) of Serie 5.

Solution:

The extended function is oddE| and therefore all a,, coefficients are going to vanish.
Integration by parts (and a change of variable y = ntx/L) yields

L
1 /7 1 12 .
bn = I J x sin <TX) dx = [ 2 J ysin(ny)dy =
L

—7T
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=y (=)™ — () (1)) =~ (1),
T™“n m™m
2To be precise, it is odd almost everywhere, in the sense that f(—x) = —f(x) for all x apart from a discrete
set. In fact when we extend it to a 2L periodic function we get for example f(L) = —L = f(—L). Anyway,

because we are integrating the function, these points don’t contribute.
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Therefore the Fourier series is

& . (N & nt12L . /mm
nZ_l bn sin (TX> = nZ_l(—l) p— sin (TX) .

3. Find the complex Fourier series of the same function f(x) considered in the previous
exercise. Verify that the coefficients c,, of this series
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are related as written in the script to the real coefficients a,,, bn, found in the previous
exercise.

If you have not computed it before: the real Fourier series of f is
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Solution:
The complex Fourier coefficients for f are, for n # 0,
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Therefore the complex Fourier series of f is
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The formula relating the real coefficients to the complex coefficients is

apg = Co
an=¢ch+c.n (n=1)
bn=1i(cn—c_n)

and substituting we get indeed
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which is what we expected.
. Find the solution y : [0, c0) — R of the following |integral equation:

y(t) +Jy(’r) cosh(t—T1)dt =t +e".
0

Solution:

Let us start by rewriting
t
J y(1) cosh(t —t)dt = (y * cosh ) (t).
0

Now we apply the Laplace transform on the ODE. The left-hand side is:

3 2451

L(y)+ L(y*cosh(t)) =Y(s)+ Y(s)L(cosh(t)) = Y(s) + - 1Y(s) =21

Y(s)

The right-hand side is:

1 s?24s-—1
s—1  s2(s—1)°

1
L(t“—et) = 7+
S

Setting these expressions equal and solving for Y(s) gives:

s+1 1 1
= :7—f—

Y(s)

s2 s s?

and the solution is the obtained by applying the inverse Laplace transform:

y(t) =1+t
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5. Find the inverse Laplace transform of

S
(s2—16)2"

by using

a)

b)

the differentiation rule: £’(f) = —£(tf(t)).
Solution:

To use the differentiation rule we need to recognise our function as a derivative
of a Laplace transform. In fact:

s 11y
(s2—16)2 2 \s2—16

And this function is the Laplace transform of

1/ 1 1/ 4 1
. <82_16> - <82_16> = 5 (£(sinh(41))).

Hence
L1 ((S> _ —%Lfl ((L(sinh(4t))") = %t sinh(4t).

s2 —16)2
the integration rule: [ * £(f)(s) ds’ = £ (Lﬂ) (s).
Solution:

We call f(t) the inverse Laplace transform of this function. We plug the function
into the integral on the left-hand side of the integral equation. This gives
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According to the integration rule this is equal to the Laplace transform of

1/ 1\ _ . [ft
s (o05) - < ()

But we recognise this as the Laplace transform of:
1 1 1 4 1. .
2 <52—16> ~8 <s2—16> = g (sinh(4t).

flt) 1 .
T == g Slnh(4t),

which agrees with the result we found before.

Finally we get



