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Solutions Serie 6

1. Consider the function

f(x) =

{
x, 0 6 x 6 π

2
π
2 , π

2 6 x 6 π

a) Extend f to an even function on the interval [−π,π] and then finally to an even,
2π-periodic function on R and call this function fe.
Sketch the graph of fe and find its Fourier series.

Solution:

The even extension fe is given, in the interval [−π,π], by

fe(x) =


π
2 , −π 6 x 6 −π2
−x, −π2 6 x 6 0
x, 0 6 x 6 π

2
π
2 , π

2 6 x 6 π. x
π
2

π 3
2π

−π2−π

period = 2π

−3
2π

fe(x)
π
2

Being even, the bn coefficients will vanish, while

a0 =
1

2π

π∫
−π

fe(x)dx =
1
π

π∫
0

fe(x)dx =
1
π

π
2∫
0

xdx+
1
π

π∫
π
2

π
2 dx =

1
2π
x2
∣∣∣∣
π
2

0
+
x

2

∣∣∣∣ππ
2

=
3π
8

,
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an =
1
π

π∫
−π

fe(x) cos(nx)dx =
2
π

π∫
0

fe(x) cos(nx)dx =

=
2
π

π
2∫
0

x cos(nx)dx+
2
π

π∫
π
2

π

2
cos(nx)dx =

=
2
π

 xn sin(nx)
∣∣∣∣
π
2

0
−

1
n

π
2∫
0

sin(nx)dx

+
1
n

sin(nx)
∣∣∣∣ππ

2

=

=
1
n

sin
(
nπ

2

)
+

2
n2π

cos(nx)
∣∣∣∣
π
2

0
+

1
n

sin(nx)
∣∣∣∣ππ

2

=

=
2
n2π

(
cos
(
nπ

2

)
− 1
)
=

{
− 2
n2π

, n = 2j+ 1
2
n2π

((−1)j − 1), n = 2j.

The Fourier series is thus

3π
8

+
2
π

+∞∑
j=1

1
(2j)2 ((−1)j − 1) cos(2jx) −

2
π

+∞∑
j=0

1
(2j+ 1)2 cos((2j+ 1)x).

b) Do the same for the odd, 2π-periodic extension1 of f (call this fo).

Solution:

The odd extension fo is given, in the interval (−π,π], by

fo(x) =


−π2 , −π < x 6 −π2
x, −π2 6 x 6 0
x, 0 6 x 6 π

2
π
2 , π

2 6 x 6 π. x
π
2

π 3
2π

−π2−π

period = 2π

−3
2π

fo(x)
π
2

1To be precise, we can’t extend f to an odd, periodic function everywhere because f(π) = π is not zero.
The problematic points are π+ 2kπ,k ∈ Z. Let’s assign to these points the value π.

2 Look at the next page!



Therefore here the an coefficients will be all zero, while

bn =
1
π

π∫
−π

fo(x) sin(nx)dx =
2
π

π∫
0

fo(x) sin(nx)dx =

=
2
π

π
2∫
0

x sin(nx)dx+
2
π

π∫
π
2

π

2
sin(nx)dx

=
2
π

−
x

n
cos(nx)

∣∣∣∣
π
2

0
+

1
n

π
2∫
0

cos(nx)dx

−
1
n

cos(nx)
∣∣∣∣ππ

2

= −
1
n

cos
(
nπ

2

)
+

2
n2π

sin(nx)
∣∣∣∣
π
2

0
−

1
n

cos(nπ) +
1
n

cos
(
nπ

2

)
=

2
n2π

sin
(
nπ

2

)
−

1
n

cos(nπ) =

{
− 1
n , n = 2j

2
n2π

(−1)j + 1
n , n = 2j+ 1

and the Fourier series is

−

+∞∑
j=1

1
2j

sin(2jx) +
+∞∑
j=0

(
2

(2j+ 1)2π
(−1)j +

1
2j+ 1

)
sin((2j+ 1)x).

2. Find the Fourier series of the 2L-periodic extension of

f(x) = x, x ∈ [−L,L)

considered in Exercise 5.a) of Serie 5.

Solution:

The extended function is odd2 and therefore all an coefficients are going to vanish.
Integration by parts (and a change of variable y = πx/L) yields

bn =
1
L

L∫
−L

x sin
(nπ
L
x
)
dx =

1
L
· L

2

π2

π∫
−π

y sin(ny)dy =

=
L

π2 ·
−ny cos (ny) + sin (ny)

n2

∣∣∣∣∣
π

−π

=

= −
L

π2n2 · (nπ(−1)n −n(−π)(−1)n) = −
2L
πn

(−1)n.

2To be precise, it is odd almost everywhere, in the sense that f(−x) = −f(x) for all x apart from a discrete
set. In fact when we extend it to a 2L periodic function we get for example f(L) = −L = f(−L). Anyway,
because we are integrating the function, these points don’t contribute.

3 Please turn!

http://metaphor.ethz.ch/x/2019/hs/401-0363-10L/ex/serie5.pdf


Therefore the Fourier series is
+∞∑
n=1

bn sin
(nπ
L
x
)
=

+∞∑
n=1

(−1)n+1 2L
πn

sin
(nπ
L
x
)

.

3. Find the complex Fourier series of the same function f(x) considered in the previous
exercise. Verify that the coefficients cn of this series

+∞∑
n=−∞ cne

inπL x

are related as written in the script to the real coefficients an,bn found in the previous
exercise.
If you have not computed it before: the real Fourier series of f is

+∞∑
n=1

(−1)n+1 2L
πn

sin
(nπ
L
x
)
 

{
an = 0
bn = (−1)n+1 2L

πn

Solution:

The complex Fourier coefficients for f are, for n 6= 0,

cn =
1

2L

L∫
−L

xe−i
nπ
L x dx =

L

2π2

π∫
−π

ye−iny dy =

=
L

2π2

−
y

in
e−iny

∣∣∣∣π
−π

+
1
in

π∫
−π

e−iny dy

 =

=
L

2π2

(
−
π

in
e−inπ −

π

in
einπ +

1
n2 e

−iny

∣∣∣∣π
−π

)
=

=
L

2π2

(
−
π

in
e−inπ −

π

in
einπ +

1
n2 e

−inπ −
1
n2 e

inπ

)
=

=
(−1)nL

2π2

(
−
π

in
−
π

in
+

1
n2 −

1
n2

)
= −

(−1)nL
inπ

= i
(−1)nL
nπ

and for n = 0 is

c0 =
1

2L

∫L
−L
xdx =

x2

4L

∣∣∣∣L
−L

= 0.

Therefore the complex Fourier series of f is
∞∑

n=−∞
n 6=0

i
(−1)nL
nπ

einx.
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The formula relating the real coefficients to the complex coefficients is
a0 = c0

an = cn + c−n (n > 1)
bn = i (cn − c−n)

and substituting we get indeed
a0 = c0 = 0
an = cn + c−n = i

(−1)nL
nπ − i

(−1)nL
nπ = 0

bn = i(cn − c−n) = i
(
i
(−1)nL
nπ + i

(−1)nL
nπ

)
= (−1)n+1 2L

nπ

which is what we expected.

4. Find the solution y : [0,∞)→ R of the following integral equation:

y(t) +

t∫
0

y(τ) cosh(t− τ)dτ = t+ et.

Solution:

Let us start by rewriting∫t
0
y(τ) cosh(t− τ)dτ =

(
y ∗ cosh

)
(t).

Now we apply the Laplace transform on the ODE. The left-hand side is:

L(y) +L(y ∗ cosh(t)) = Y(s) + Y(s)L(cosh(t)) = Y(s) +
s

s2 − 1
Y(s) =

s2 + s− 1
s2 − 1

Y(s)

The right-hand side is:

L(t+ et) =
1
s2 +

1
s− 1

=
s2 + s− 1
s2(s− 1)

.

Setting these expressions equal and solving for Y(s) gives:

Y(s) =
s+ 1
s2 =

1
s
+

1
s2 ,

and the solution is the obtained by applying the inverse Laplace transform:

y(t) = 1 + t.
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5. Find the inverse Laplace transform of

s

(s2 − 16)2 ,

by using

a) the differentiation rule: L ′(f) = −L(tf(t)).

Solution:

To use the differentiation rule we need to recognise our function as a derivative
of a Laplace transform. In fact:

s

(s2 − 16)2 = −
1
2

(
1

s2 − 16

) ′

And this function is the Laplace transform of

−
1
2

(
1

s2 − 16

)
= −

1
8

(
4

s2 − 16

)
= −

1
8
(L(sinh(4t))) .

Hence

L−1
(

s

(s2 − 16)2

)
= −

1
8
L−1 ((L(sinh(4t)) ′

)
=

1
8
t sinh(4t).

b) the integration rule:
∫+∞
s L(f)(s ′)ds ′ = L

(
f(t)
t

)
(s).

Solution:

We call f(t) the inverse Laplace transform of this function. We plug the function
into the integral on the left-hand side of the integral equation. This gives

+∞∫
s

L(f)(s ′)ds ′ =

+∞∫
s

s ′

((s ′)2 − 16)2ds
′ = −

1
2

(
1

(s ′)2 − 16

) ∣∣∣∣+∞
s

=
1
2

(
1

s2 − 16

)
.

According to the integration rule this is equal to the Laplace transform of

1
2

(
1

s2 − 16

)
= L

(
f(t)

t

)
.

But we recognise this as the Laplace transform of:

1
2

(
1

s2 − 16

)
=

1
8

(
4

s2 − 16

)
=

1
8
L(sinh(4t)).

Finally we get
f(t)

t
=

1
8

sinh(4t),

which agrees with the result we found before.
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