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Solutions Serie 9

Theory reminder on the classification of PDEs: A 2nd order PDE is an equation of the
form:

Auxx + 2Buxy +Cuyy = F(x,y,u,ux,uy)

where the coefficients A,B,C may also be functions of x,y. We say that the PDE is,
respectively, hyperbolic, parabolic or elliptic, if the function AC − B2 is, respectively,
always smaller, equal, or greater than zero. When the sign changes in different regions
of the plane (x,y), the equation is called of mixed type.
For example the Euler-Tricomi equation

uxx − xuyy = 0

has AC− B2 = 1 · (−x) − (0)2 = −x, and therefore is of mixed type: hyperbolic in the
half plane x > 0, elliptic in the other half plane x < 0, and parabolic on the line x = 0.
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1. Consider the following PDEs - in what follows, u = u(x,y) is a function of two
variables.

uxx + 2uxy + uyy + 3ux + xu = 0, (1)
uxx + 2uxy + 2uyy + uy = 0, (2)

uxx + 8uxy + 2uyy + exux = 0, (3)
yuxx + 2xuxy + uyy − uy = 0, (4)

(x+ 1)uxx + 2yuxy + x2uyy = 0. (5)

Which of this is hyperbolic? Parabolic? Elliptic? Of mixed type?
In the last case, try to understand in which region of the plane (x,y) they are hyper-
bolic, parabolic or elliptic1.

Solution:

(1) AC−B2 = 1 − 1 = 0  parabolic.
(2) AC−B2 = 2 − 1 = 1 > 0  elliptic.
(3) AC−B2 = 2 − 42 = −14 < 0  hyperbolic.
(4) AC − B2 = y − x2  of mixed type. The equation y − x2 = 0 describes a
parabola in the plane. Above the parabola the equation is elliptic, on the parabola it
is parabolic, and below it is hyperbolic.
(5) AC− B2 = (x+ 1)x2 − y2  of mixed type. The equation (x+ 1)x2 − y2 = 0
describes the following curve.
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The closed region in the middle and the right region is where (x + 1)x2 − y2 > 0
and therefore the PDE is elliptic. The big open region remaining is where the PDE is
hyperbolic, while the red curve describes the points in which it is parabolic.

1You can plot the curve {AC−B2 = 0} on - say - Wolfram|Alpha to understand its shape.
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2. Consider the following functions.

a) u(x, t) = e−100t cos(2x)

b) u(x, t) = sin(2x) cos(8t)

c) u(x, t) = e−36t sin(3x)

Which PDE between the heat equation, ut = c2uxx, and the wave equation, utt =
c2uxx, does each of these solve? Write down also which is the constant c in each case.

Solution:

a) u(x, t) = e−100t cos(2x).

Solution:

We have 
ut = −100e−100t cos(8x) = −100u
utt = · · · = 1002u

uxx = · · · = −4u

To answer the question we are asked to compare either the first, or the second
term, with a positive multiple of the third. This is possible (only) for the first
term, and we need coefficient c = 5. Therefore u is a solution of the heat equati-
on:

ut = −100u = 52(−4u) = c2uxx.

b) u(x, t) = sin(2x) cos(8t).

Solution:

Here 
ut = −8 sin(2x) sin(8t)
utt = ∂t(−8 sin(2x) sin(8t)) = −64 sin(2x) cos(8t) = −64u
uxx = · · · = −4u

In this case instead u is a solution of the wave equation, with coefficient c = 4:

utt = −64u = 42(−4u) = c2uxx.

c) u(x, t) = e−36t sin(3x).

Solution:

This is analogous to the first one.
ut = −36e−36t sin(3x) = −36u
utt = · · · = 362u

uxx = · · · = −9u
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so we have a solution of the heat equation, this time with coefficient c = 2

ut = −36u = 22(−9u) = c2uxx.

3. Find the general solution u = u(x,y) for the following PDEs:

a) uy + 2yu = 0

Solution:

In this equation there are no derivatives in the variable x anywhere. We can thus
think of this as a family of ODEs, one for each x ∈ R. More formally for each
fixed x the function u(x, ·) must be a solution of

uy + 2yu = 0.

We have already met equations of this kind and the general solution is given
by some constant factor multiplied by e−

∫
2y = e−y

2
. Except that this time the

’constant’ factor may depend on x, and is not constant anymore. The general
solution is

u(x,y) = f(x)e−y
2
,

where f(x) is any function.

b) uyy = 4xuy.

Solution:

This is somehow similar because there are still no derivatives on x. First we call
v := uy and we obtain the equation

vy = 4xv.

As before this can be solved by solving the correspondent problem for v(x, ·) for
each fixed x. This time the general solution is

v(x,y) = f(x)e4xy,

and by integrating in y we get general solution

u(x,y) = g(x) +
f(x)

4x
e4xy.
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4. Consider the following time-dependent version of the heat equation on the interval
[0,L], in which the constant varies linearly with time. We also impose boundary
conditions and we look for solutions:

u = u(x, t) s.t.


ut = 2tc2uxx, x ∈ [0,L], t ∈ [0,+∞)

u(0, t) = 0, t ∈ [0,+∞)

u(L, t) = 0, t ∈ [0,+∞)

Find all possible solutions of the specific form u(x, t) = F(x)G(t).

Solution:

The differential equation becomes:

F(x)Ġ(t) = 2tc2F ′′(x)G(t),

which is convenient to rewrite as

F ′′(x)

F(x)
=

Ġ(t)

2tc2G(t)

because it becomes clear that we are comparing a function of x with a function of
t, and the only way that this equality might be true is that both these functions are
equal and constant:

F ′′(x)

F(x)
=

Ġ(t)

2tc2G(t)
= k, k ∈ R.

The boundary conditions are

u(0, t) = F(0)G(t) = 0 and u(L, t) = F(L)G(t) = 0 ∀t ∈ [0,+∞)

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F(0) = F(L) = 0.

In other words the initial PDE with boundary conditions becomes the system of
coupled equations {

F ′′(x) = kF(x),
F(0) = F(L) = 0,

and Ġ(t) = 2tkc2G(t).

We first solve the system for F(x), distinguishing the cases of k positive, zero, or
negative. For k > 0 the general solution of the ODE is

F(x) = C1e
√
kx +C2e−

√
kx,

which is, however, not compatible with the boundary conditions, in the sense that the
only solution of this form satisfying the boundary conditions is the trivial solution:
C1 = C2 = 0. In fact

0 = F(0) = C1 +C2 ⇔ C2 = −C1 =⇒ F(x) = C1

(
e
√
kx − e−

√
kx

)
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but then imposing the other condition:

0 = F(L) = C1

(
e
√
kL − e−

√
kL

)
⇔ either C1 = 0

or e2
√
kL = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
kL 6= 0 and

therefore its exponential is not 1.

For k = 0 the general solution is F(x) = C1x+C2 which is also not compatible with
boundary conditions unless C1 = C2 = 0. In fact

0 = F(0) = C2 =⇒ F(x) = C1x

and then
0 = F(L) = C1L ⇔ C1 = 0.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for
positive real number p, and general solutions of F ′′ = −p2F are:

F(x) = A cos(px) +B sin(px).

We impose the boundary conditions:

0 = F(0) = A =⇒ F(x) = B sin(px)

and
0 = F(L) = B sin(pL)

(if B 6= 0)⇔ pL = nπ, n ∈ Z>1

Conclusion: we have a nontrivial solution for each n > 1, k = kn = −n
2π2

L2 :

Fn(x) = Bn sin
(nπ
L
x
)

.

The corresponding equation for G(t) is

Ġ = −2t
n2π2c2

L2 G

which has general solution

Gn(t) = Cne−
n2π2c2

L2 t2
.

The conclusion is that for every n > 1 we have a solution

un(x, t) = Fn(x)Gn(t) = Ane−
n2π2c2

L2 t2
sin

(nπ
L
x
)

, An ∈ R.
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5. Let f : R→ R be a function whose Fourier transform is

√
2πF(f)(ω) =

3
(5 + iω)

.

Compute the following integrals:

a)

+∞∫
−∞

f(x)dx

Solution:

We can compute the integral of f(x) using the value of the Fourier transform in
ω = 0:

+∞∫
−∞

f(x)dx =
√

2πF(f)(0) =
3
5

.

b)

+∞∫
−∞

xf(x)dx , c)
+∞∫
−∞

x2f(x)dx

Solution:

For any positive integer number k ∈ Z>1, we would like to find the Fourier
transform of xkf(x) and the compute it in ω = 0. We can find this Fourier
transform using the result of Exercise 5.b) of Serie 8:

F(xf)(ω) = i
d

dω
F(ω)  F(xkf)(ω) = ik

dk

dωk
F(f)(ω).

So in general:

+∞∫
−∞

xkf(x)dx =
√

2πF(xkf)(0) =
√

2π ik
dk

dωk
F(f)(0)

and all we need to do is compute the derivatives of 3
(5+iω) :

• i
d

dω

(
3

(5 + iω)

)
= i

−3i
(5 + iω)2 =

3
(5 + iω)2

• i2
d2

dω2

(
3

(5 + iω)

)
= i

d

dω

(
3

(5 + iω)2

)
= i

−6i
(5 + iω)3 =

6
(5 + iω)3
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Using what we said before we obtain:

•
+∞∫
−∞

xf(x)dx =
3

(5 + iω)2

∣∣∣∣∣
ω=0

=
3
25

•
+∞∫
−∞

x2f(x)dx =
6

(5 + iω)3

∣∣∣∣∣
ω=0

=
6

125
.

Remark: You can compute the inverse Fourier transform and find that the func-
tion f(x) in the exercise is

f(x) =

{
3e−5x, x > 0
0, otherwise.

You can then verify that:

+∞∫
−∞

f(x)dx =

+∞∫
0

3e−5x dx =
3
5

+∞∫
−∞

xf(x)dx =

+∞∫
0

3xe−5x dx =
3
25

+∞∫
−∞

x2f(x)dx =

+∞∫
0

3x2e−5x dx =
6

125

But also observe that computing these integrals in a traditional way is more
difficult than the technique we used with the Fourier transform. In fact with
the Fourier transform each x more in the integral amounts to computing one
derivative more, while usually each x more in the integral amounts to make one
more integration by parts.

We can quite easily compute the next derivatives and obtain the next integrals:

+∞∫
−∞

x3f(x)dx =
18

625
,

+∞∫
−∞

x4f(x)dx =
72

3125
, . . .

+∞∫
−∞

xkf(x)dx = 3 · k!
5k+1 , ∀k ∈ Z>0
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