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Exercise 1 2 3 4 5 Total
Value 8 10 8 8 14 48

1. Laplace Transform (8 Points)

Find the solution y : [0,+∞)→ R of the following integral equation:

y(t) +
1√
2

∫t
0
y(τ) sin(

√
2(t− τ))dτ = t (1)

Solution:

We apply the Laplace transform to both sides of the integral equation (1) and obtain the
following algebraic equation for the Laplace transform Y = Y(s) of y = y(t):

Y(s) +
1√
2
L
(
y(t) ∗ sin(

√
2t)
)
=

1
s2

Y(s) +
1

��
√

2
Y(s) · ��

√
2

s2 + 2
=

1
s2

Y(s)

(
1 +

1
s2 + 2

)
=

1
s2

Y(s) =
s2 + 2

(s2 + 3)s2 =
2
3
· 1
s2 +

1
3
· 1
(s2 + 3)

=⇒ y(t) = L−1(Y(s))(t) =
2
3
t+

sin(
√

3t)
3
√

3

2. Fourier Series (10 Points)

a) (5 Points) Let f(x) = x(π− x) for x ∈ [0,π] and fodd(x) its odd, 2π-periodic extension.
Compute the Fourier series of fodd(x).

Solution:

fodd(x) is an odd function, therefore its Fourier series contains only sines. The half
period is L = π, so the Fourier series has the form

+∞∑
n=1

bn sin(nx)
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with bn given by

bn =
2
π

∫π
0
fodd(x) sin(nx)dx =

2
π

∫π
0
x(π− x) sin(nx)dx =

=
2
π
·
(
(n2x(x− π) − 2) cos(nx) +n(π− 2x) sin(nx)

n3

) ∣∣∣∣∣
π

0

=
2
π
· 2 − 2(−1)n

n3 =

=
4
πn3 (1 − (−1)n) =

{
0, n even

8
πn3 , n odd

The Fourier series is

fodd(x) '
4
π

+∞∑
n=1

(1 − (−1)n)
n3 sin(nx) =

8
π

+∞∑
j=0

1
(2j+ 1)3 sin((2j+ 1)x)

b) (5 Points) Let α be a fixed number 0 < α < π, and geven(x) be the even, 2π-periodic
extension of the function:

g(x) =

{
1, 0 6 x 6 α

0, α < x 6 π

Compute the Fourier series of geven(x).

Solution:

geven(x) is an even function, therefore its Fourier series contains only cosines. The half
period is L = π, so the Fourier series has the form

a0 +

+∞∑
n=1

an cos(nx)

with a0 and an given by

a0 =
1
π

∫π
0
geven(x)dx =

1
π

∫α
0

dx =
α

π

an =
2
π

∫π
0
geven(x) cos(nx)dx =

2
π

∫α
0

cos(nx)dx =
2
π

sin(nα)
n

The Fourier series is

geven(x) '
α

π
+

2
π

+∞∑
n=1

sin(nα)
n

cos(nx)

3. Fourier Integral (8 Points)

Let a,b > 0 be some fixed positive numbers and f(x) be the following function:

x

f(x)

a

b
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a) (1 Points) Write a formula for f(x).

Solution:

f(x) =

{
b
(
1 − x

a

)
, 0 6 x 6 a

0, otherwise

b) (5 Points) Compute its Fourier integral.

Solution:

The Fourier integral representation of f(x) will be an expression of the form:

f(x) '
∫+∞

0
[A(ω) cos(ωx) +B(ω) sin(ωx)]dω

where the coefficients A(ω),B(ω) are

A(ω) =
1
π

∫+∞
−∞ f(v) cos(ωv)dv =

b

π

∫a
0

(
1 −

v

a

)
cos(ωv)dv =

=
b

π
· ω(a− v) sin(ωv) − cos(ωv)

aω2

∣∣∣∣∣
v=a

v=0

=
b

π
· − cos(ωa) + 1

aω2 =
b

πa
· 1 − cos(ωa)

ω2

B(ω) =
1
π

∫+∞
−∞ f(v) sin(ωv)dv =

b

π

∫a
0

(
1 −

v

a

)
sin(ωv)dv =

=
b

π
· −ω(a− v) cos(ωv) − sin(ωv)

aω2

∣∣∣∣∣
v=a

v=0

=
b

π
· − sin(ωa) +ωa

aω2 =
b

πa
· aω− sin(ωa)

ω2

So the fourier integral is:

b

πa

∫+∞
0

(1 − cos(ωa)) cos(ωx) + (aω− sin(ωa)) sin(ωx)
ω2 dω

c) (2 Points) Find the value of the Fourier integral in the point x = 0. Motivate your answer.

Solution:

The Fourier integral coincides with the function wherever it is continuous, while in the
points of discontinuity it is equal to the average of left and right limit of the function.
The point x = 0 is a point of discontinuity, so the value of the Fourier integral at this
point is

f(0+) + f(0−)
2

=
b+ 0

2
=
b

2

4. Wave Equation (8 Points)

Let u = u(x, t) the solution of the following wave equation:

utt = c
2uxx , x ∈ R, t > 0

u(x, 0) = f(x) =

{
−x2 + 4πx− 4π2 , |x| 6 2π
0 , |x| > 2π

ut(x, 0) = g(x) =

{
sin2(x) , |x| 6 2π
1
x2 , |x| > 2π
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a) (4 Points) Compute the value u(0, πc ).

Solution:

Using d’Alembert formula, the solution u(x, t) of the wave equation is

u(x, t) =
1
2
(f(x+ ct) + f(x− ct)) +

1
2c

∫x+ct
x−ct

g(s)ds

In (x, t) = (0, πc ) the points x± ct are ±π. Therefore we need to use the first expression
in the definition by cases of the functions f,g, and

u(0,
π

c
) =

1
2
(f(π) + f(−π)) +

1
2c

∫π
−π
g(s)ds =

1
2
(−π2 − 9π2) +

1
2c

∫π
−π

sin2(s)ds =

= −5π2 +
1
2c
π

b) (4 Points) Compute the following asymptotic limit: lim
a→+∞u(a, ac ).

Solution:

In the points of the form (x, t) = (a, ac ), the points x± ct are, respectively, x− ct = 0
and x+ ct = 2a, therefore

lim
a→+∞u(a,

a

c
) = lim

a→+∞
(

1
2
(f(2a) + f(0)) +

1
2c

∫2a

0
g(s)ds

)
= −2π2 +

1
2c

∫+∞
0

g(s)ds =

= −2π2 +
1
2c

(∫2π

0
sin2(s)ds+

∫+∞
2π

1
s2 ds

)
= −2π2 +

1
2c

(
π+

1
2π

)
.

5. Heat Equation (14 Points) Find the solution of the problem
ut = c

2uxx , x ∈ [0,π], t > 0
u(0, t) = u(π, t) = 0 , t > 0
u(x, 0) = cos2(x) sin(x) , x ∈ [0,π]

using the method of separation of variables, showing and motivating every step.

Solution:

With separation of variables u(x, t) = F(x)G(t) the differential equation becomes:

F(x)Ġ(t) = c2F ′′(x)G(t),

which is better to write as
F ′′(x)

F(x)
=

Ġ(t)

c2G(t)

because it becomes clear that we are comparing a function of x with a function of t, and the
only way that this equality can be true is that both these functions are equal and constant:

F ′′(x)

F(x)
=

Ġ(t)

c2G(t)
= k, k ∈ R.
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The boundary conditions are

u(0, t) = F(0)G(t) = 0 and u(π, t) = F(π)G(t) = 0 ∀t > 0

which in order to be true, excluding the trivial solution G(t) ≡ 0, become:

F(0) = F(π) = 0.

In other words the initial PDE with boundary conditions becomes the system of coupled
equations {

F ′′(x) = kF(x),
F(0) = F(π) = 0,

and Ġ(t) = c2kG(t).

We first solve the system for F(x), distinguishing the cases of k positive, zero, or negative.
For k > 0 the general solution of the ODE is

F(x) = C1e
√
kx +C2e−

√
kx,

which is, however, not compatible with the boundary conditions, in the sense that the only
solution of this form satisfying the boundary conditions is the trivial solution: C1 = C2 = 0.
In fact

0 = F(0) = C1 +C2 ⇔ C2 = −C1 =⇒ F(x) = C1

(
e
√
kx − e−

√
kx
)

but then imposing the other condition:

0 = F(π) = C1

(
e
√
kπ − e−

√
kπ
)
⇔ either C1 = 0

or e2
√
kπ = 1

which implies C1 = 0 (and consequently C2 = −C1 = 0) because 2
√
kπ 6= 0 and therefore its

exponential is not 1.

For k = 0 the general solution is F(x) = C1x+C2 which is also not compatible with boundary
conditions unless C1 = C2 = 0. In fact

0 = F(0) = C2 =⇒ F(x) = C1x

and then
0 = F(π) = C1π =⇒ C1 = 0.

It remains the case k < 0, in which its convenient to write it in the form k = −p2 for positive
real number p, and general solutions of F ′′ = −p2F are:

F(x) = A cos(px) +B sin(px).

F(0) = 0 if and only if A = 0. F(π) = 0 if and only if B sin(pπ) = 0, so if we want nontrivial
solutions B 6= 0, we need to have

p = n

for some integer n > 1. In conclusion we have a nontrivial solution for each n > 1, k = kn =
−n2:

Fn(x) = Bn sin (nx)

The corresponding equation for G(t) is

Ġ = −c2n2G
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which has general solution
Gn(t) = Cne−c

2n2t

The conclusion is that for every n > 1 we have a solution

un(x, t) = Fn(x)Gn(t) = Bn sin(nx)e−c
2n2t

and by the superposition principle:

u(x, t) =
+∞∑
n=1

Bn sin(nx)e−c
2n2t

where the coefficients Bn are determined by the initial condition

g(x) = u(x, 0) =
+∞∑
n=1

Bn sin(nx).

This case is particularly easy because we can rewrite the datum at t = 0 as

cos2(x) sin(x) =
1
2
(cos(2x) + 1) sin(x) =

1
4
(sin(3x) − sin(x)) +

1
2

sin(x) =
1
4
(sin(3x) + sin(x))

which is already expressed as a linear combination of these functions. There is no need to
compute any Fourier series to obtain:

B1 = 1
4

B3 = 1
4

others Bn = 0

Finally, the solution will be

u(x, t) =
1
4

sin(x)e−c
2t +

1
4

sin(3x)e−9c2t
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