

Bemerkungen bzgl statistichen Tests

(basierend auf Slides von Marloes Maathuis und Lukas Meier)

Einseitige vs. zweiseitige Tests

- Die Entscheidung f
 ür eine einseitige oder zweiseitige Alternative H
 A h
 ängt von der Fragestellung ab.
- Eine einseitige Alternative ist dann angebracht, wenn nur ein Unterschied in eine bestimmte Richtung von Bedeutung / Interesse ist (Bsp. Überschreitung Grenzwert).
- Der einseitige Test ist auf der einen (irrelevanten) Seite «blind», dafür verwirft er auf der anderen (relevanten) Seite früher als der zweiseitige Test (da der Verwerfungsbereich früher beginnt).
- Man sagt auch, dass er eine grössere Macht hat in diesem Bereich (siehe später).

p-Wert

- Zur Erinnerung: Test mittels Verwerfungsbereich:
 - Wir setzen das Signifikanzniveau α im Voraus fest.
 - Aus α und der Verteilung der Teststatistik unter H_0 berechnen wir den Verwerfungsbereich. Je kleiner (grösser) α , desto kleiner (grösser) ist der Verwerfungsbereich.
 - Beachte: Das Signifikanzniveau α und der Verwerfungsbereich sind fix und hängen nicht von den Daten ab. Die Teststatistik hängt von den Daten ab und ist eine Zufallsvariable.
 - Wir verwerfen H₀, falls der realisierte Wert der Teststatistik im Verwerfungsbereich liegt.
- Alternativ: wir benutzen den p-Wert anstelle vom Verwerfungsbereich
- Definition des p-Werts: Der p-Wert eines Tests ist die W'keit, unter der Nullhypothese ein mindestens so extremen Wert der Teststatistik (bzgl der Alternative) zu beobachten wie das aktuell beobachtete.

Illustration p-Wert beim einseitigen T-Test («nach oben»)

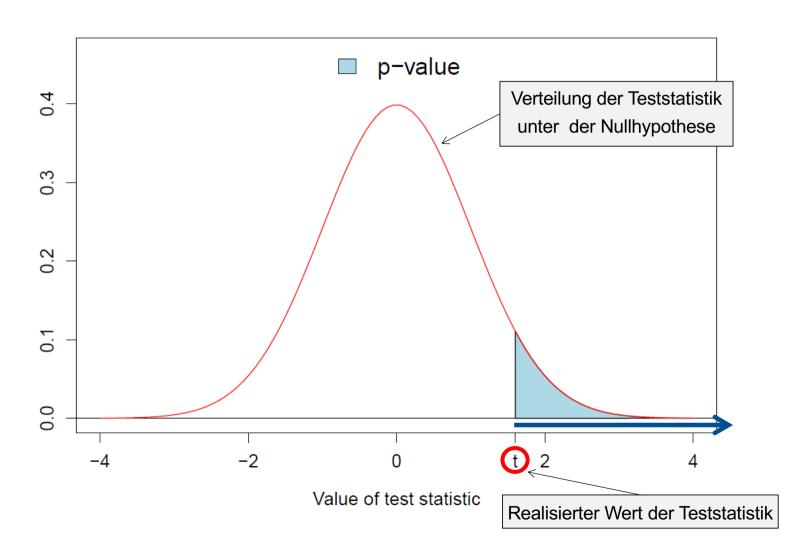


Illustration p-Wert beim einseitigen T-Test («nach unten»)

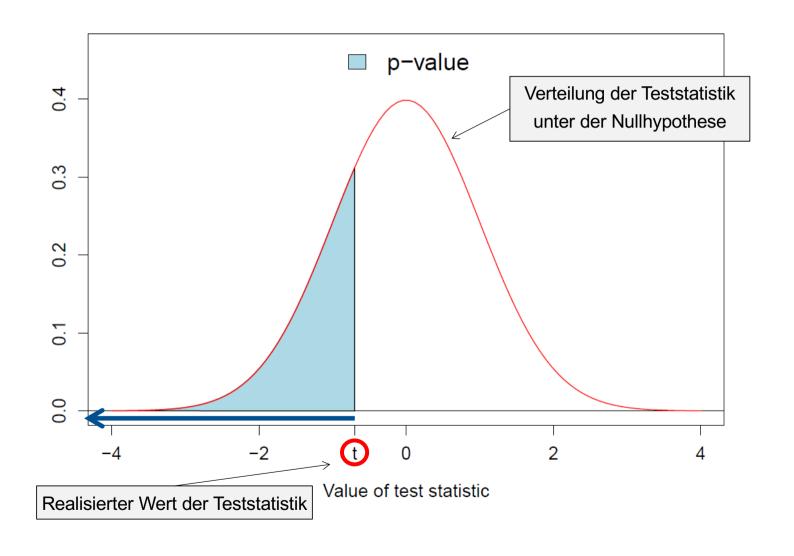
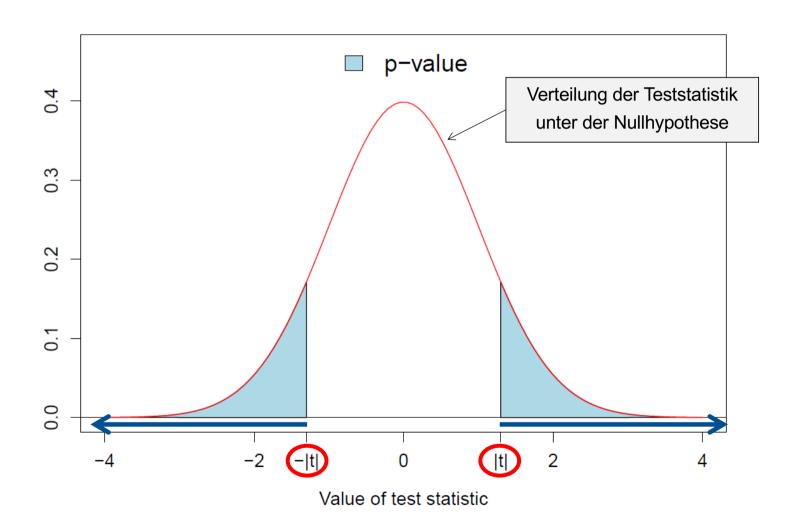


Illustration p-Wert beim zweiseitigen T-Test



p-Wert

- Es gilt (siehe Wandtafel): $pWert \le \alpha \Leftrightarrow Teststatistik \ im \ Verwerfungsbereich$
- Test mittels p-Wert:
 - Wir setzen das Signifikanzniveau α im voraus fest.
 - Wir berechnen den p-Wert.
 - Beachte: Das Signifikanzniveau α ist fix und hängt nicht von den Daten ab. Der p-Wert hängt von den Daten ab und ist also eine Zufallsvariable.
 - Wir verwerfen H_0 falls $pWert \leq \alpha$.
- Clickerfrage p-Wert

p-Wert

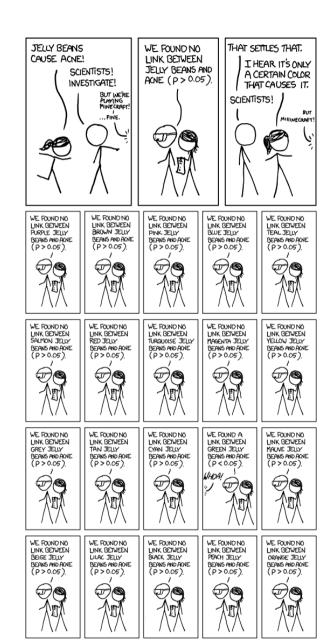
- Beachte: der p-Wert ist eine Wahrscheinlichkeit, **berechnet unter der Annahme, dass** H_0 **stimmt**. Er sagt also nichts über die Wahrscheinlichkeit **ob** H_0 oder H_A stimmt. Insbesondere:
 - $pWert \neq P(H_0 stimmt)$
 - $pWert \ge P(Fehler 1. Art)$

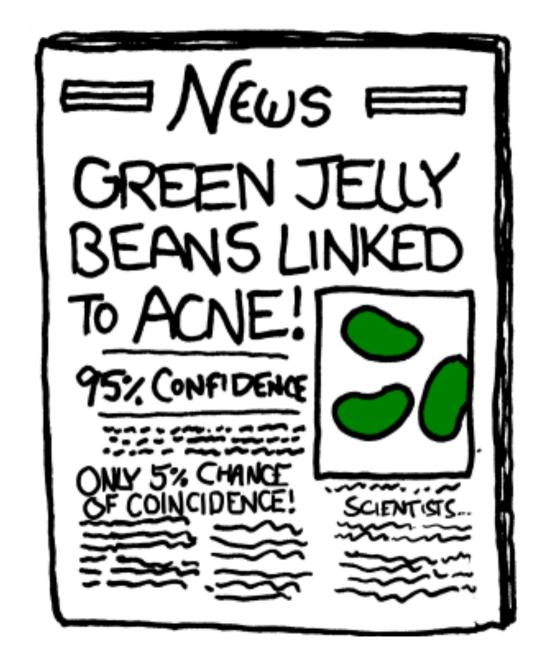
p-Wert: Nutzen / Gefahren

- Der p-Wert kann als «standardisierte Teststatistik» verwendet werden. Wir können am p-Wert direkt ablesen, ob die Nullhypothese verworfen wird.
- Einige «Gefahren» des p-Werts:
 - Ein kleiner p-Wert ist nicht automatisch fachlich relevant, denn der p-Wert sagt nichts über die Effektgrösse.
 - ⇒ Berechne auch das Vertrauensintervall.
 - Multiples Testing / p-value Hacking: Falls H_0 gilt, dann erwartet man in $\alpha \times 100\%$ der Tests einen signifikanten p-Wert (i.e., $pWert \le \alpha$). Falls man also genügend viele Tests macht, dann findet man immer einen signifikanten p-Wert. Die Garantie $P(Fehler\ 1.Art) \le \alpha$ gilt nur für einen einzelnen Test!
 - ⇒ Mache nur einen im voraus genau beschriebenen Test. Oder beschreibe wieviele Tests gemacht wurden, und benutze multiple testing correction.

Interessante Artikel:

- http://www.nature.com/news/scientific-method-statistical-errors-1.14700
- http://www.nature.com/news/statisticians-issue-warning-over-misuse-of-p-values-1.19503





Source:

https://xkcd.com/882/

Multiple testing correction

- Einfachste Methode: Bonferroni correction:
 - Wenn man K tests macht, und man möchte

 $P(Fehler 1. Art in mindestens einem Test) \leq \alpha$

dann kann man jeden einzelnen Test zum Niveau α/K machen.

Beweis:

P(Fehler 1. Art in mindestens einem der K Tests)

- $= P(\{Fehler 1. Art in Test 1\} OR ... OR \{Fehler 1. Art in Test K\})$
- $\leq \sum_{j=1}^{K} P(Fehler\ 1. Art\ in\ Test\ j) \leq \sum_{j=1}^{K} \frac{\alpha}{K} = \alpha$

Macht

• Sei $\theta \in H_A$ und sei

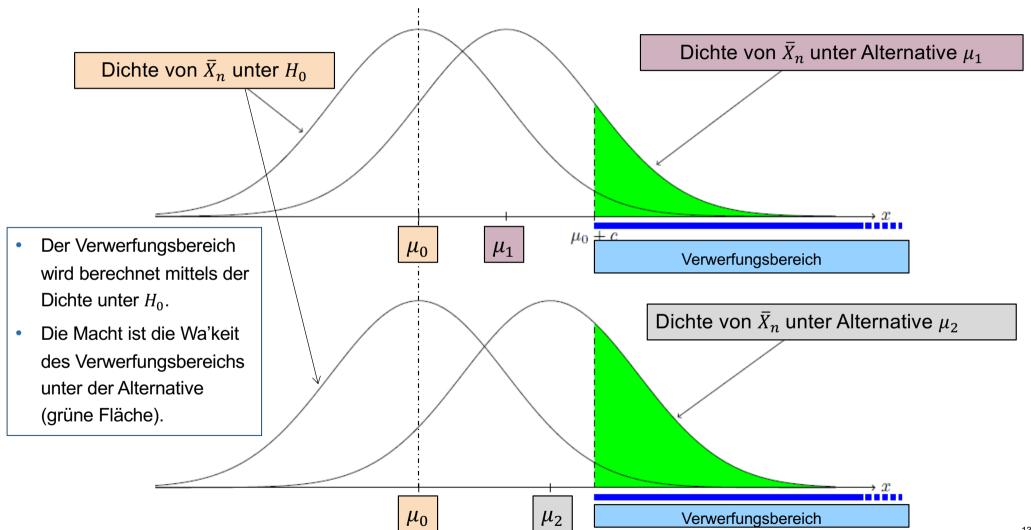
$$\beta(\theta) = P_{\theta}(Fehler\ 2.Art) = P_{\theta}(Test\ verwirft\ H_0\ nicht).$$

Die Macht eines Tests ist dann:

$$P_{\theta}(Test\ verwirft\ H_0) = 1 - P_{\theta}(Test\ verwirft\ H_0\ nicht) = 1 - \beta(\theta).$$

• Die Macht hängt also von θ ab.

Macht beim einseitigen Z-Test $(H_0: \mu = \mu_0, H_A: \mu > \mu_0)$



Bemerkungen zur Macht

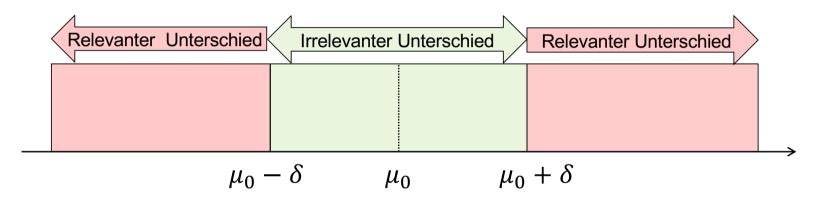
- Je grösser der Unterschied zwischen μ_0 und μ_A , desto grösser wird die Macht.
- Je grösser die Stichprobe, desto grösser wird die Macht. Begründung: Weil $Var(\bar{X}_n) = \sigma^2/n$, konzentrieren die Dichten sich mehr um μ_0 und μ_A .
- Die Macht ist wichtig zur Ermittlung der nötigen Stichprobengrösse.
 - Sie vermuten z.B. eine **bestimmte Abweichung** von der Nullhypothese (z.B. $\mu = 1$ statt $\mu = \mu_0 = 0$).
 - Sie planen ein Experiment und wollen mit einer Wahrscheinlichkeit von 80% die Nullhypothese verwerfen können (= Macht).
 - Man kann dann die nötige Stichprobengrösse n berechnen.

- Statistische Tests werden in der Praxis oft «missbraucht» und falsch angewendet → schlechter Ruf der Statistik.
- Das Problem ist: Je grösser unsere Stichprobe ist, desto eher werden wir signifikante Effekte finden, denn die Nullhypothese stimmt in der Regel nie exakt.(Zur Erinnerung: Je grösser die Stichprobe, desto grösser die Macht.)
- Wenn wir z.B. H_0 : $\mu = 400$ testen und in Tat und Wahrheit gilt aber $\mu = 401$, so werden wir bei genügend grosser Stichprobe n mit hoher Wahrscheinlichkeit ein signifikantes Testresultat erhalten.
- Ob etwas signifikant ist, ist also unter anderem eine Frage des Aufwands (\$).

- Die (wichtigere) Frage ist: Wann haben wir ein relevantes Resultat?
- Wir müssen vorher definieren, was «Relevanz» bedeutet.
- Was ein relevanter Unterschied ist, hängt ab vom Fachgebiet / Fachwissen. Die Statistik hat hier keine Antwort!
- Bsp: Durchmesser von Zylinderscheiben:

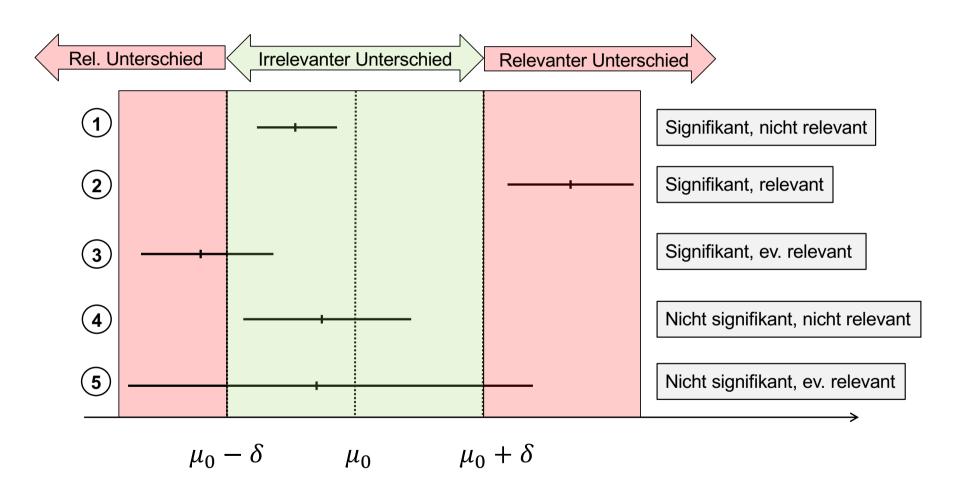
Mit was für Abweichungen vom Sollwert kann man leben?

• Wir müssen also eine **Differenz** δ angeben, ab der man sagt, dass ein Unterschied **relevant** ist für eine entsprechende Anwendung.



- Basierend auf unseren Daten berechnen wir dann ein Vertrauensintervall für den Parameter von Interesse.
- Die Idee besteht nun darin, dass man schaut, wo das Vertrauensintervall bzgl. obigen Bereichen liegt.

- Liegt das Vertrauensintervall ganz im «relevanten Bereich», so spricht man von einem relevanten Effekt.
- Ist zwar der Test signifikant (d.h. VI enthält μ_0 nicht) aber das VI liegt ganz im «irrelevanten Bereich», so hat man zwar ein signifikantes, aber **kein** relevantes Resultat.
- Siehe auch Bsp. nächste Slide.



- Man kombiniert also «das Beste aus beiden Welten»:
 Das Fachwissen und die Statistik, die einem hilft, die Unsicherheit zu quantifizieren (durch das VI).
- Es reicht in der Regel also nicht, sich nur «blind» auf die statistische Signifikanz zu verlassen (obwohl dies vielerorts so gemacht wird).
- Wir müssen uns zusätzlich auch immer fragen: «Ist das auch ein relevantes Resultat?».