Complex Analysis Formulary

Prof. Dr. Paul Biran

Autumn semester 2019

Throughout the exam, let $\mathsf{D}_{z_0}(r) = \{z \in \mathbb{C} : |z - z_0| < r\}$ and $\mathsf{D}^*_{z_0}(r) = \{z \in \mathbb{C} : 0 < |z - z_0| < r\}, z_0 \in \mathbb{C}, r > 0$. By a domain $D \subset \mathbb{C}$, we mean an open and connected subset.

Theorem (Cauchy-Riemann equation) Let $U \subset \mathbb{C}$ be open and $u, v : U \to \mathbb{R}$ be differentiable functions such that the partial derivatives $\partial_x u, \partial_y u, \partial_x v$ and $\partial_y v$ are continuous at $z_0 \in U$. Then f = u + iv is complex differentiable at z_0 if and only if

 $\partial_x u = \partial_y v$ and $\partial_y u = -\partial_x v$, at the point z_0 .

Theorem Let D be a domain. For a continuous function $f : D \to \mathbb{C}$, the following statements are equivalent:

- (a) There exist a primitive F for f.
- (b) For every piecewise C^1 path γ in D, the integral $\int_{\gamma} f(z) dz$ only depends on the end points of γ .
- (c) $\int_{\gamma} f(z) dz = 0$ for every closed piecewise C^1 path γ in D.

Theorem (Cauchy) Let $f: D \to \mathbb{C}$ be holomorphic in the domain D. Let $\gamma \subset D$ be a closed C^1 -path which is homotopic in D to a constant path. Then

$$\int_{\gamma} f(z) dz = 0.$$

Theorem (Morera) Let $f: D \to \mathbb{C}$ be a continuous function in the domain D. Assume that for every (solid) rectangle $R \subset D$ whose sides are parallel to the x - y axes we have $\int_{\partial R} f(z) dz = 0$. Then f is holomorphic in D.

Theorem (Cauchy integral formula) Let $U \subset \mathbb{C}$ be open and $f : U \to \mathbb{C}$ be a holomorphic function. Let $\overline{\mathsf{D}} \subset U$ be a disk. Then

$$f(z) = \frac{1}{2\pi i} \int_{\partial \mathsf{D}} \frac{f(w)}{w - z} dw, \ \forall z \in \mathsf{D}$$

For the k-th derivative $f^{(k)}$ of f, we have

$$f^{(k)}(z) = \frac{k!}{2\pi i} \int_{\partial \mathsf{D}} \frac{f(w)}{(w-z)^{k+1}} dw.$$

Theorem (Estimate of derivatives) Suppose that a function f is holomorphic in an open disk $\mathsf{D}_{z_0}(r)$ and that $|f(z)| \leq N$ on $\mathsf{D}_{z_0}(r)$. Then for each $k \geq 0, z \in \mathsf{D}_{z_0}(r)$:

$$|f^{(k)}(z)| \le \frac{k!Nr}{(r-|z-z_0|)^{k+1}}.$$

Theorem (Liouville) The only bounded entire functions are the constant functions on \mathbb{C} .

Theorem (Schwarz's lemma) Suppose that a function f is holomorphic in the unit disk $D_0(1)$ and $f(0) = 0, |f(z)| \le 1$ for every $z \in D_0(1)$. Then $|f'(0)| \le 1$ and $|f(z)| \le |z|$ for every $z \in D_0(1)$. Moreover, if |f'(0)| = 1 or if $|f(z_0)| = |z_0|$ for some $0 \ne z_0 \in D_0(1)$, then f(z) = cz for some |c| = 1.

Theorem (Maximum principle) 1) Let $f: D \to \mathbb{C}$ be a holomorphic function in the domain D. If |f| has a local maximum at an (interior) point of D, then f is constant 2) Let D be a bounded domain, $f: \overline{D} \to \mathbb{C}$ continuous and holomorphic in D. Then |f| obtains its maximal value at some point on the boundary ∂D of D.

Theorem (Riemann Extension) Let $f : \mathsf{D}_{z_0}^*(r) \to \mathbb{C}$ be a holomorphic function. Then z_0 is a removable singularity of f if and only if f is bounded in some punctured disk centered at z_0 .

Theorem(Existence of a branch) Suppose that a function f is holomorphic and free of zeros in a domain D. There exists a branch of $\log f(z)$ in D if and only if

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = 0$$

for every closed, piecewise C^1 path $\gamma \subset D$.

Theorem (Limit of holomorphic functions) Suppose that a sequence of holomorphic functions $\{f_n\}$ on a domain D converges locally uniformly to the function f on D. Then f is a holomorphic function on D. Moreover, $f_n^{(k)} \to f^{(k)}$ locally uniformly on D for each positive integer k.

Theorem (Taylor series) Suppose that f is a holomorphic function on a domain U, that $z_0 \in U$ and that the open disk $\mathsf{D}_{z_0}(r)$ is contained in D. Then f can be represented in $\mathsf{D}_{z_0}(r)$ as the sum of a Taylor series centered at z_0 . This expansion is uniquely determined by f: if $f(z) = \sum_{n=0}^{\infty} a_n (z-z_0)^n$ in $\mathsf{D}_{z_0}(r)$, the coefficient a_n is given by $a_n = f^{(n)}(z_0)/n!$.

Theorem (Casorati-Weierstrass) If a holomorphic function $f : D_{z_0}^*(r) \to \mathbb{C}$ has an essential singularity at z_0 , then its image is dense in \mathbb{C} .

Theorem (Residue theorem) Let $D \subset \mathbb{C}$ be a domain and $z_1, \dots, z_n \in D$ be a finite collection of distinct points. Let $f: D \setminus \{z_1, \dots, z_n\} \to \mathbb{C}$ be a holomorphic function. Let $\gamma \subset D \setminus \{z_1, \dots, z_n\}$ be a closed piecewise C^1 -path. Then

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{k=1}^{n} I_{\gamma}(z_k) Res_{z_k}(f).$$

Theorem (Argument principle) Let $\gamma = \partial D$ be a Jordan path bounding a bounded domain D, oriented counter clockwise. Let f be a meromorphic function in a domain U that contains \overline{D} . Assume f has no zeros and no poles on γ . Denote by $z_1, \dots, z_r \in D$ the zeros of f in D and by n_k the order of the zero $z_k, k = 1, \dots, r$. Denote by w_1, \dots, w_s the poles of f in D and by m_j the order of the pole w_j ,

 $j = 1, \cdots, s$. Then

$$I_{f \circ \gamma}(0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{k=1}^{r} n_k - \sum_{j=1}^{s} m_j.$$

Theorem (Rouché) Let $\gamma = \partial D$ be a Jordan path bounding a bounded domain D. Let $U \subset \mathbb{C}$ be domain containing \overline{D} and $f, g: U \to \mathbb{C}$ be holomorphic functions. Assume that for all $z \in \gamma$,

$$|f(z) - g(z)| < |f(z)| + |g(z)|.$$

Then f and g have the same number of zeros in D when counted with multiplicities.

Theorem (Open mapping) If $f: D \to \mathbb{C}$ is a nonconstant holomorphic function in the domain D, then for any open subset $U \subset D$, f(U) is open in \mathbb{C} .