Complex Analysis Exercise 5

Prof. Dr. Paul Biran

Due: 18.10.2019

1. Compute the following integrals:

- (a) $\int_{|z|=3} \frac{z}{(z-1)(z-i)} dz$,
- (b) $\int_{|z|=2} \frac{e^z}{z^2-1} dz$,
- (c) $\int_{\gamma} 2z 3\overline{z} + 1dz$ where γ is the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$,
- (d) $\int_{\gamma} \frac{dz}{\sqrt{z}} (\sqrt{z} = e^{\frac{1}{2}Logz})$, where $\gamma = \{e^{it} | 0 \le t \le \pi\}$.

2. (a) Show that for any rational function R(x) which is defined on [-1, 1], the following holds:

$$\int_{0}^{2\pi} R(\cos\theta) d\theta = \int_{|z|=1} R(\frac{1}{2}(z+z^{-1})) \frac{dz}{iz}$$

(b) Compute
$$\int_0^{2\pi} \frac{d\theta}{a + \cos\theta}$$
 for $a > 1$.

3. Compute $\int_0^t x \sin(2x) dx$ using the complex integral $\int_{[0,t]} z e^{2iz} dz$.

4. (a) Liouville's theorem says that every bounded entire function is constant. Prove the theorem in the following way: Let f be an entire and bounded function. Pick $a \neq b \in \mathbb{C}$. Let R be a real number greater than |a| and |b|. Calculate $\int_{|z|=R} \frac{f(z)dz}{(z-a)(z-b)}$ and check what happens when $R \to \infty$. (b) Let f be an entire function with two periods. Show that f is constant. (c) Prove the fundamental theorem of algebra: Let p be a nonconstant polynomial with complex coefficients. Then there exists $\alpha \in \mathbb{C}$ such that $p(\alpha) = 0$. (d) Find all entire function f such that $|f'(z)| < e^{-(Rez)^2}$ for all $z \in \mathbb{C}$. 5. Let $D\subset\mathbb{C}$ be a unit disk at the origin. Find all functions f(z) which are holomorphic on D and which satisfy

$$f(\frac{1}{n}) = n^2 f(\frac{1}{n})^3, \quad n = 2, 3, 4, \cdots$$