Complex Analysis Exercise 7

Prof. Dr. Paul Biran

Due: 01.11.2019

1. Let k be a field and $p(x)$ be a polynomial with coefficients in k. If $p\left(x_{0}\right)=0$ for some $x_{0} \in k$, show that $p(x)=\left(x-x_{0}\right) q(x)$ for some polynomial $q(x)$.
2. Use Cauchy estimates to prove the following statement: Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be an entire function such that there exsits $n \in \mathbb{N}$ and $R, C>0$ such that

$$
|f(z)|<C|z|^{n}, \text { for any }|z|>R .
$$

Then f is a polynomial in z whose degree is less than or equal to n.
3. Let $f: \mathbb{C} \rightarrow \mathbb{C}$ be a non-constant holomorphic function. Show that $f(\mathbb{C})$ is dense in \mathbb{C}.
4. Prove that there is not entire function f such that $\forall z \in \mathbb{C},|f(z)|>|z|$.
5. Let f be an entire function. Prove that in each of the following cases, f is constant:
(a) f satisfies $\operatorname{Im}(f(z)) \leq 0$ for all $z \in \mathbb{C}$
(b) $|f(z)| \neq 1$ for all $z \in \mathbb{C}$
(c) f does not receive any value in $\mathbb{R}^{-}=\{x \in \mathbb{R} \mid x \leq 0\}$.
6. Let $\mathcal{D}=\{z \in \mathbb{C}| | z \mid<1\}$ be a unit disk. Let f be a holomorphic function on the unit disk. Assume that $|f(z)| \leq\left|f\left(z^{2}\right)\right|$ in \mathcal{D}. Prove that f is constant.
7. Let \mathcal{D} be the open disk as above. Find all biholomorphic function $f: \mathcal{D} \rightarrow \mathcal{D}$.

