Complex Analysis Exercise 7

Prof. Dr. Paul Biran

Due: 01.11.2019

1. Let k be a field and p(x) be a polynomial with coefficients in k. If $p(x_0) = 0$ for some $x_0 \in k$, show that $p(x) = (x - x_0)q(x)$ for some polynomial q(x).

2. Use Cauchy estimates to prove the following statement: Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that there exists $n \in \mathbb{N}$ and R, C > 0 such that

 $|f(z)| < C|z|^n$, for any |z| > R.

Then f is a polynomial in z whose degree is less than or equal to n.

3. Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant holomorphic function. Show that $f(\mathbb{C})$ is dense in \mathbb{C} .

4. Prove that there is not entire function f such that $\forall z \in \mathbb{C}, |f(z)| > |z|$.

5. Let f be an entire function. Prove that in each of the following cases, f is constant:

- (a) f satisfies $Im(f(z)) \leq 0$ for all $z \in \mathbb{C}$
- (b) $|f(z)| \neq 1$ for all $z \in \mathbb{C}$
- (c) f does not receive any value in $\mathbb{R}^- = \{x \in \mathbb{R} | x \leq 0\}.$

6. Let $\mathcal{D} = \{z \in \mathbb{C} | |z| < 1\}$ be a unit disk. Let f be a holomorphic function on the unit disk. Assume that $|f(z)| \leq |f(z^2)|$ in \mathcal{D} . Prove that f is constant.

7. Let \mathcal{D} be the open disk as above. Find all biholomorphic function $f: \mathcal{D} \to \mathcal{D}$.