
Complex Analysis Exercise 10 (Solution)

Prof. Dr. Paul Biran

Due: 22.11.2019

1. Let f : D := {|z| = 1} → C be a continuous function. Assume that there
exists a family of polynomials Pn → f which converges to f uniformly on D.
Prove that there exists F : D → C which is continuous and holomorphic at
interior points such that F |D = f ,
Solution. Put F (z) := limn→∞ Pn(z). We show that Pn converge uniformly on
{|z| ≤ 1}. In particular, they converge pointwise so F is well-defined. Moreover,
this implies that F is continuous and holomorphic in interior as a uniform limit of
continuous and holomorphic functions. Clearly, F ||z|=1 = f . By the maximum
principle,

sup
|z|≤1

|Pn(z)− Pm(z)| ≤ max
|z|=1

|Pn(z)− Pm(z)| → ∞, n,m→∞

and therefore Pn(z) converge uniformly on the closed disk.

2. Compute Taylor expansion around zero for the following functions:

(a) z cos2z

(b) sinh(z)

(c) 5z−1
z2−2z−15

(d) 1
(z−3)2

(e) Log 1+iz
1−iz .

Solution.(a) Since cos z = eiz+e−iz

2 , z cos2z = z +
∑∞

k=1
(−1)k22k−1

(2k!) z2k+1.

(b) sinh z = ez−e−z

2 =
∑∞

n=0
z2n+1

(2n+1)! .

(c) 5z−1
z2−2z−15 = 2

z+3 + 3
z−5 =

∑∞
n=0[(−1)n 2

3n+1 − 3
5n+1 ]zn.

(d) 1
(1−z)3 = 1

2 ( 1
1−z )′′ = 1

2

∑∞
n=0(n + 1)(n + 2)zn by the local uniform conver-

gence.
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(e) In the neighborhood of 1, we have Log u− Log v = Log u
v . Since the coeffi-

cients of Taylor series only depend on the local behavior of the function,

Log
1 + iz

1− iz
= Log(1 + iz)− Log(1− iz) = 2

∞∑
n=0

i2n+1

2n+ 1
z2n+1.

3. (a)Calculate Taylor expansion of 1
1−z around points 0, i,−1. Find radius of

convergence in each case.
(b) Let z0 ∈ C∗. Find the series expansion of f(z) = 1

z around z0 and determine
its radius of convergence.
(c) Show that the radius of convergence of the series

∑∞
n=1

n!
nn z

n is equal to e
and that the series diverges everywhere on the boundary.
Solution. (a) Around 0, 1

1−z =
∑∞

n=1 z
n. Around i,

1

1− z
=

1

(1− i)− (z − i)
=

1

1− i
· 1

1− z−i
z−i

=
1

1− i

∞∑
n=0

(z − i)n

(1− i)n
.

Similarly, around −i, 1
1−z = 1

2

∑∞
n=0( z+1

z )n. Note that 1
1−z has only one singu-

lar point at z = 1. Therefore the radius of convergences are 1,
√

2, 2 respectively.
(b) Similarly, we have

1

z
=

∞∑
n=0

1

z0
(
z0 − z
z0

)n =

∞∑
n=0

(−1)n

(z0)n+1
(z − z0)n.

The convergence of radius is |z0|.
(c) We use Stirling formula n! ∼

√
2πn(n

e )n. Then the inverse of the radius of
convergence is

lim sup
n→∞

n

√
n!

nn
= lim sup

n→∞

n

√
√

2πn
(n
e )n

nn
=

1

e
.

4. Consider the series

arcsin(z) =

∞∑
n=0

(2n)!

22n(n!)2
z2n+1

2n+ 1
.

Determine its radius of convergence and show that arcsin(z) is the unique in-
verse function of sin(z), wherever it is defined.
Solution. Using the ratio test, the square of convergence of radius is

lim
n→∞

( (2n)!
22n(n!)2(2n+1) )

( (2n+2)!
22n+2((n+1)!)2(2n+3) )

= lim
n→∞

4(n+ 1)2(2n+ 3)

(2n+ 1)2(2n+ 2)
= 1.
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We can easily check that sin(z) is bijective on the domain so the inverse function
is also holomorphic. On the other hand the real part of the arcsin z defined
by a power series coincides with arcsin x on the real line hence arcsin z is the
unique inverse function of sin z on the domain.

5. Let D = {z||z| < 1} be a unit disk and D be the closure. Give an example of
a continuous function f : D → C that is holomorphic on D, but does not have
a holomorphic continuation on any domain in C containing D.
Solution. We can simply define f as a power series with radius of convergence
1, that converges everywhere on the boundary, for example f(z) =

∑∞
n=0

zn

n2 . f

is clearly continuous on D and holomorphic on D. To get the last statement, we
use the fact that every domain containing D contains an open disk with radius
r > 1 (We can use the fact that D is compact).
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