Complex Analysis Exercise 11(Solution)

Prof. Dr. Paul Biran

Due: 29.11.2019

1. Compute Laurent series for the following functions:

- (a) $\frac{e^{1-z}}{z^2}$ around 0
- (b) $z^4(e^{\frac{1}{z^2}}-1)$ around 0
- (c) $e^{z+\frac{1}{z}}$ in the annulus $0 < |z| < \infty$
- (d) $\frac{1}{1-z^2}$ in every annulus around 0 and around 1.

Solution. (a) $\frac{e^{1-z}}{z^3} = e \cdot \frac{1}{z^3} \sum_{n=0}^{\infty} \frac{(-z)^n}{n!} = \sum_{n=-3}^{\infty} \frac{(-1)^{n+1}ez^n}{(n+3)!}$ (b) $z^4(e^{\frac{1}{z^2}} - 1) = z^4(\sum_{n=0}^{\infty} \frac{z^{-2n}}{n!} - 1) = \dots$ (c) $e^{z+\frac{1}{z}} = e^z e^{\frac{1}{z}} = \sum_{n=-\infty}^{\infty} \sum_{j=n}^{\infty} \frac{1}{j!} \frac{1}{(n+j)!} z^n$ (d) Around $z_0 = 1$: we have two singular points $z = \pm 1$, so the relevant annuli are 0 < |z-1| < 2 and |z-1| > 2. On 0 < |z-1| < 2, we have

$$\frac{1}{1-z^2} = -\frac{1}{2}\frac{1}{z-1} + \frac{1}{4}\frac{1}{1+\frac{z-1}{2}} = -\frac{1}{2}\frac{1}{z-1} + \sum_{n=0}^{\infty}\frac{1}{4}(-1)^n\frac{(z-1)^n}{2^n}.$$

On |z-1| > 2, we have

$$\frac{1}{1-z^2} = -\frac{1}{2}\frac{1}{z-1} + \frac{1}{2(z-1)}\frac{1}{\frac{2}{z-1}+1} = -\frac{1}{2}\frac{1}{z-1} + \frac{1}{2(z-1)}\sum_{n=0}^{\infty} (-2)^n (z-1)^{-n}.$$

Around $z_0=0$: on |z|<1,

$$\frac{1}{1-z^2} = \sum_{n=0}^{\infty} z^{2n}$$

and on |z| > 1,

$$\frac{1}{1-z^2} = -\frac{1}{z^2} \sum_{n=0}^{\infty} z^{-2n}.$$

2. Let $f(z) = \frac{z-7}{z^2+z-2}$. Find Laurent expansion for every relevant annulus around zero.

Solution. We have two singular points at z = 1, -2. On |z| < 1,

$$f(z) = 2\frac{1}{1-z} + \frac{3}{2}\frac{1}{1+\frac{z}{2}} = \sum_{n=0}^{\infty} (2 + \frac{(-1)^n 3}{2^{n+1}})z^n.$$

On 1 < |z| < 2,

$$f(z) = \frac{3}{2} \frac{1}{1 + \frac{z}{2}} - \frac{2}{z} \frac{1}{1 - \frac{1}{z}} = \sum_{n=0}^{\infty} \frac{(-1)^n 3}{2^{n+1}} z^n + \sum_{n=0}^{\infty} (-2) \frac{1}{z^{n+1}}.$$

On |z| > 2,

$$f(z) = \frac{3}{z} \frac{1}{1 + \frac{2}{z}} - \frac{2}{z} \frac{1}{1 - z^{-1}} = \frac{3}{z} \sum_{n=0}^{\infty} \frac{(-2)^n}{z^n} - \frac{2}{z} \sum_{n=0}^{\infty} \frac{1}{z^n}$$

3. (a) Let $f \in \text{Hol}(|z| > 1)$. Assume that f satisfies $\int_{|z|=2} f(z)dz = 0$. Show that f has a primitive in $\{|z| > 1\}$.

(b) Let $f \in \text{Hol}(|z| > R)$ for some R > 0 and f(-z) = f(z). Prove that f has a primitive in $\{|z| > R\}$ and $\int_{|z|=r} f dz = 0, r > R$.

Solution. (a) f is holomorphic in |z| > 1, so there exists a Laurent expansion in this annulus: $f(z) = \sum a_n z^n$. From Laurent theorem and local uniform convergence, we can integrate term by term

$$0 = \int_{|z|=2} f(z)dz = \sum_{-\infty}^{\infty} a_n \int_{|z|=2} z^n dz = a_{-1}2\pi i$$

and get $a_{-1} = 0$. Now we can write a primitive F of f as follows

$$F(z) = \sum_{n \neq -1} \frac{a_n}{n+1} z^{n+1}.$$

One can immediately verify that F' = f. (b) There exists a Laurent expansion $f(z) = \sum_{-\infty}^{\infty} a_n z^n$ in |z| > R. We prove $a_{2n+1} = 0$. Let $g := f - \sum_{n=-\infty}^{\infty} a_{2n} z^{2n}$. Then g(z) = g(-z) = -g(z) and hence $g \equiv 0$. By integration by parts, a primitive function of f is $\sum_{-\infty}^{\infty} \frac{a_{2n}}{2n+1} z^{2n+1}$.

4. Prove the following statement: Let f be holomorphic in a < |z| < b. Then for every $a < r_1 < r_2 < b$,

$$\int_{|z|=r_1} f dz = \int_{|z|=r_2} f dz$$

Solution. Expand f into Laurent series in a < |z| < b: $f(z) = \sum a_n z^n$. Then for a < r < b,

$$\int_{|z|=r} f(z)dz = \sum_{-\infty}^{\infty} a_n \int_{|z|=r} z^n dz = a_{-1}2\pi i.$$

The result does not depend on r.

5. Find all $\lambda \in \mathbb{C}$ for which there exists entire function f such that $\forall z, f(z) = f(\lambda z)$ (f is not constant).

Solution. Any entire function admits Taylor expansion $f(z) = \sum_{n=0}^{\infty} a_n z^n$. By assumption, $f(\lambda z) = \sum_{n=0}^{\infty} \lambda^n a_n z^n = f(z)$. By the uniqueness of Taylor expansion, $\lambda^n a_n = a_n$ for all n. It can happen only when $\lambda^n = 1$ for some n. On the other hand, any n root of unity λ is possible as we can take $f(z) = z^n$.