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Prof. Dr. Paul Biran

Due: 03.12.2019

1. Let A be a square centered at the origin. Denote by s one of sides of A. Let
f : A→ C be holomorphic on interior of A and continuous on the boundary of
A such that f(z) = 0 for all z ∈ s. Prove that f = 0 on A.
Solution. Let f1 = f(z), f2 = f(iz), f3 = f(−z), f4 = f(−iz). Then each
side of A has corresponding fi which vanishes on that side. Therefore g(z) :=
f1(z). · · · .f4(z) vanishes on the boundary of A. By the maximum principle,
g ≡ 0. ∀z ∈ A, out of four points {±z,±iz} ⊂ A, there is at least one zero of
f . Let zk = 1/k be a sequence converging to zero. Denote wk ∈ {±zk,±izk}
the corresponding zero of f . Then wk → 0, so we have convergent sequence of
zeros of f . Therefore f = 0 on A.

2. Let f be an entire function which satisfies the following property: ∀z ∈ C,
there exists N = N(z) (not necessarily constant) such that f (N)(z) = 0. Prove
that f is a polynomial.
Solution. Denote Zn = {z|f (n)(z) = 0} the set of zeros of f (n). By assumption,
∪nZn = C, so at least one of Zn should be uncountable. Then we can find a
converging sequence in Zn (We can consider Zn ∩Br(0), r ∈ N for instance and
use the fact that Br(0) is compact.). Therefore, f (n) = 0 and f is polynomial
of degree ≤ n.

3. Let f be an entire function. Assume that f(z) ∈ R for any z ∈ (− 1
2019 ,

1
2019 ).

Show that f(z̄) = f(z).
Solution. Following Exercise 3, we know that f∗ = f(z̄) is an entire function.
∀Z ∈ (− 1

2019 ,
1

2019 ), f∗(z) = f(z). Since (− 1
2019 ,

1
2019 ) is not discrete, f∗(z) =

f(z). Therefore, for w = z̄, f(z̄) = f(w) = f∗(w) = f(z).

4. Let f be holomorphic in the unit disk. Assume that f satisfies f( 1
2k ) =

f( 1
2k+1 ), ∀k ∈ N. Show that f is constant.

Solution. Let ϕ(z) := z
z+1 which sends 1

k to 1
k+1 . ϕ is holomorhic in D =

{|z| < 1}, so f ◦ ϕ ∈ Hol(D). We have f ◦ ϕ( 1
2k ) = f( 1

2k+1 ) = f( 1
2k ), so
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f ◦ ϕ ≡ f . In particular, f( 1
n+1 ) = f ◦ ϕ( 1

n ) = f( 1
n ), so f is constant on the

convergent sequence {1/n}. Thus f is constant.

5. Find all singular points for the following functions. Determine their type and
compute the residues:

(a) 1
z3−z5

(b) ez−1
zn , n ≥ 1

(c) sin z · sin 1
z

(d) 1
ez+1

(e) 1
sin2(z)

(f) z
1−ez2

.

Solution. (a) 1
z3−z5 −

1
z3(1−z)(1+z) . We have simply poles at z = ±1 and a

pole of order 3 at z = 0. From the residue formula, Res1 = Res−1 = − 1
2 . Near

z = 0,

f(z) =
1

z3
1

1− z2
=

1

z3
+

1

z
+ z + · · · ,

so Res0 = 1
(b) z = 0 is the singular point. We divide into two cases.

n = 1: limz→0
ez−1
z = e0 = 1, hence we have a removable singularity.

n = 2: ez−1
z =

∑∞
k=1

zk

k!

zn = 1
zn−1 + · · · + 1

(n−1)!
1
z + · · · , so we have pole of

order n− 1 with Res0 = 1
(n−1)! .

(c) We have unique singularity at z = 0. We have limz→0,z∈R f(z) = 0 and
limz→0,z∈iR |f(z)| =∞, so limz→0 f(z) does not exist. Hence z = 0 is essential.
(d) We have singular points at z = πi + 2πki, k ∈ Z. The function is periodic
with period 2πi, so all points are of the same type and have the same residue.
It is enough to check at z0 = πi. z0 is a simple zero of ez + 1, so it is a simple
pole of 1

ez+1 . Resz0 = limz→πi
z−πi
ez+1 = limz→πi

1
ez = −1.

(e) We have singular points at z = πk, k ∈ Z. Those are zeroes of order 2 of the
denominator, so those are poles of order 2. Resπk = limz→πk(z− πk)2 1

sin2(z) =
0.
(f) We have singular points at z2 = 2πik, k ∈ Z. z = 0 is the simple zero of
numerator and zero of order 2 of denominator, so it is a simple pole. Res0 =

limz→0
z2

1−ez = limz→0
2z

−2zez2
= limz→0− 1

ez2
= −1.

When z =
√

2πik, it is a simple pole. Res√2πik = limz→
√
2πik

z(z−
√
2πik)

1−ez2
=

limz→
√
2πik

(z−
√
2πik)+z

−2zez2
= − 1

2 .
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6. Let f, g be entire and non-constant functions. Assume that |f(z)| ≤ |g(z)|
for all z. Prove that there exists c ∈ C such that f(z) = cg(z).

Solution. Define h(z) = f(z)
g(z) . Since g is not constant, singularities of h are

isolated. By assumption, |h(z)| ≤ 1, ∀z where g(z) 6= 0. In particular, ∀z0,
g(z0) = 0, h is bounded near z0. By Riemann extension theorem, z0 is a
removable singularity. We extend h to an entire function . This extension is
still bounded since |h(z0)| = | limz→z0 h(z)| ≤ 1. Therefore, h is entire and
bounded, hence it is a constant function. We conclude f(z) = cg(z), c ∈ C, ∀z
where g(z) 6= 0. For z where g(z) = 0, |f(z)| ≤ |g(z)| = 0, so f is also zero and
f(z) = cg(z) holds for all z ∈ C.
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