Complex Analysis Exercise 12 (Solution)

Prof. Dr. Paul Biran

Due: 03.12.2019

1. Let A be a square centered at the origin. Denote by s one of sides of A. Let $f: A \to \mathbb{C}$ be holomorphic on interior of A and continuous on the boundary of A such that f(z) = 0 for all $z \in s$. Prove that f = 0 on A.

Solution. Let $f_1 = f(z), f_2 = f(iz), f_3 = f(-z), f_4 = f(-iz)$. Then each side of A has corresponding f_i which vanishes on that side. Therefore $g(z) := f_1(z), \dots, f_4(z)$ vanishes on the boundary of A. By the maximum principle, $g \equiv 0, \forall z \in A$, out of four points $\{\pm z, \pm iz\} \subset A$, there is at least one zero of f. Let $z_k = 1/k$ be a sequence converging to zero. Denote $w_k \in \{\pm z_k, \pm iz_k\}$ the corresponding zero of f. Then $w_k \to 0$, so we have convergent sequence of zeros of f. Therefore f = 0 on A.

2. Let f be an entire function which satisfies the following property: $\forall z \in \mathbb{C}$, there exists N = N(z) (not necessarily constant) such that $f^{(N)}(z) = 0$. Prove that f is a polynomial.

Solution. Denote $Z_n = \{z | f^{(n)}(z) = 0\}$ the set of zeros of $f^{(n)}$. By assumption, $\bigcup_n Z_n = \mathbb{C}$, so at least one of Z_n should be uncountable. Then we can find a converging sequence in Z_n (We can consider $Z_n \cap \overline{B_r}(0), r \in \mathbb{N}$ for instance and use the fact that $\overline{B_r}(0)$ is compact.). Therefore, $f^{(n)} = 0$ and f is polynomial of degree $\leq n$.

3. Let f be an entire function. Assume that $f(z) \in \mathbb{R}$ for any $z \in (-\frac{1}{2019}, \frac{1}{2019})$. Show that $f(\overline{z}) = \overline{f(z)}$.

Solution. Following Exercise 3, we know that $f^* = \overline{f(\overline{z})}$ is an entire function. $\forall Z \in (-\frac{1}{2019}, \frac{1}{2019}), f^*(z) = f(z)$. Since $(-\frac{1}{2019}, \frac{1}{2019})$ is not discrete, $f^*(z) = f(z)$. Therefore, for $w = \overline{z}, f(\overline{z}) = f(w) = f^*(w) = \overline{f(z)}$.

4. Let f be holomorphic in the unit disk. Assume that f satisfies $f(\frac{1}{2k}) = f(\frac{1}{2k+1}), \forall k \in \mathbb{N}$. Show that f is constant.

Solution. Let $\varphi(z) := \frac{z}{z+1}$ which sends $\frac{1}{k}$ to $\frac{1}{k+1}$. φ is holomorphic in $D = \{|z| < 1\}$, so $f \circ \varphi \in Hol(D)$. We have $f \circ \varphi(\frac{1}{2k}) = f(\frac{1}{2k+1}) = f(\frac{1}{2k})$, so

 $f \circ \varphi \equiv f$. In particular, $f(\frac{1}{n+1}) = f \circ \varphi(\frac{1}{n}) = f(\frac{1}{n})$, so f is constant on the convergent sequence $\{1/n\}$. Thus f is constant.

5. Find all singular points for the following functions. Determine their type and compute the residues:

- (a) $\frac{1}{r^3 r^5}$
- (b) $\frac{e^z 1}{z^n}, n \ge 1$
- (c) $\sin z \cdot \sin \frac{1}{z}$
- (d) $\frac{1}{e^{z}+1}$
- (e) $\frac{1}{\sin^2(z)}$
- (f) $\frac{z}{1-e^{z^2}}$.

Solution. (a) $\frac{1}{z^3-z^5} - \frac{1}{z^3(1-z)(1+z)}$. We have simply poles at $z = \pm 1$ and a pole of order 3 at z = 0. From the residue formula, $Res_1 = Res_{-1} = -\frac{1}{2}$. Near z = 0,

$$f(z) = \frac{1}{z^3} \frac{1}{1-z^2} = \frac{1}{z^3} + \frac{1}{z} + z + \cdots,$$

so $Res_0 = 1$

(b) z = 0 is the singular point. We divide into two cases. n = 1: $\lim_{z \to 0} \frac{e^z - 1}{z} = e^0 = 1$, hence we have a removable singularity.

n = 2: $\frac{e^z - 1}{z} = \frac{\sum_{k=1}^{\infty} \frac{z^k}{k!}}{z^n} = \frac{1}{z^{n-1}} + \dots + \frac{1}{(n-1)!} \frac{1}{z} + \dots$, so we have pole of order n-1 with $Res_0 = \frac{1}{(n-1)!}$.

(c) We have unique singularity at z = 0. We have $\lim_{z \to 0, z \in \mathbb{R}} f(z) = 0$ and $\lim_{z\to 0, z\in i\mathbb{R}} |f(z)| = \infty$, so $\lim_{z\to 0} f(z)$ does not exist. Hence z = 0 is essential. (d) We have singular points at $z = \pi i + 2\pi k i, k \in \mathbb{Z}$. The function is periodic with period $2\pi i$, so all points are of the same type and have the same residue. It is enough to check at $z_0 = \pi i$. z_0 is a simple zero of $e^z + 1$, so it is a simple pole of $\frac{1}{e^z+1}$. $Res_{z_0} = \lim_{z \to \pi i} \frac{2-\pi i}{e^z+1} = \lim_{z \to \pi i} \frac{1}{e^z} = -1$. (e) We have singular points at $z = \pi k, k \in \mathbb{Z}$. Those are zeroes of order 2 of the

denominator, so those are poles of order 2. $Res_{\pi k} = \lim_{z \to \pi k} (z - \pi k)^2 \frac{1}{\sin^2(z)} =$ 0.

(f) We have singular points at $z^2 = 2\pi i k, k \in \mathbb{Z}$. z = 0 is the simple zero of numerator and zero of order 2 of denominator, so it is a simple pole. $Res_0 =$ $\lim_{z \to 0} \frac{z^2}{1 - e^z} = \lim_{z \to 0} \frac{2z}{-2ze^{z^2}} = \lim_{z \to 0} -\frac{1}{e^{z^2}} = -1.$

When $z = \sqrt{2\pi i k}$, it is a simple pole. $\operatorname{Res}_{\sqrt{2\pi i k}} = \lim_{z \to \sqrt{2\pi i k}} \frac{z(z - \sqrt{2\pi i k})}{1 - e^{z^2}} =$ $\lim_{z \to \sqrt{2\pi i k}} \frac{(z - \sqrt{2\pi i k}) + z}{-2z e^{z^2}} = -\frac{1}{2}.$

6. Let f, g be entire and non-constant functions. Assume that $|f(z)| \leq |g(z)|$

for all z. Prove that there exists $c \in \mathbb{C}$ such that f(z) = cg(z). **Solution.** Define $h(z) = \frac{f(z)}{g(z)}$. Since g is not constant, singularities of h are isolated. By assumption, $|h(z)| \leq 1$, $\forall z$ where $g(z) \neq 0$. In particular, $\forall z_0$, $g(z_0) = 0$, h is bounded near z_0 . By Riemann extension theorem, z_0 is a removable singularity. We extend h to an entire function . This extension is still bounded since $|h(z_0)| = |\lim_{z \to z_0} h(z)| \le 1$. Therefore, h is entire and bounded, hence it is a constant function. We conclude $f(z) = cg(z), c \in \mathbb{C}, \forall z$ where $g(z) \neq 0$. For z where g(z) = 0, $|f(z)| \leq |g(z)| = 0$, so f is also zero and f(z) = cg(z) holds for all $z \in \mathbb{C}$.