Complex Analysis Exercise 4 (Solution)

Prof. Dr. Paul Biran

Due: 11.10.2019

1. Prove or give a counterexample of the following statements:

(a)
$$Log(zw) = Log(z) + Log(w)$$

(b)
$$Log(z^{-1}) = -Log(z), z \neq 0$$

(c)
$$z^{w+1} = z \cdot z^w$$
.

Solution.

(a) False. Take $z = w = e^{\frac{3\pi}{4}i}$.

(b) False. For $z = re^{i\theta} \notin \mathbb{R}^-$, $Log(z) = lnr + i\theta$ but $Log(z^{-1}) = -lnr - i\theta$.

(c) True. $z^{w+1} = e^{(w+1)Logz + (w+1)2\pi ik} = e^{w+1Logz + w2\pi ik} = z \cdot z^w$.

2. Solve the equation $cos(z) = 0, z \in \mathbb{C}$.

Solution. This question is similar to Problem 7 in the last exercise sheet. By the similar argument, we can easily get $z = \frac{(2n+1)\pi}{2}$.

3. Calculate the integral $\int_{\gamma} Rez + Imzdz$ where $\gamma(t)$ is given by:

(a)
$$t + it^2$$
, $t \in [-1, 1]$

(b)
$$1 + t + i(2 + t), t \in [0, 1]$$

(c)
$$e^{it}$$
, $t \in [0, 2\pi]$.

Solution.

(a)
$$\int_{\gamma} Rez + Imzdz = \int_{-1}^{1} (t+t^2)(1+2it)dt = \frac{2}{3} + \frac{4}{3}i$$
.

(b)
$$\int_{\gamma} Rez + Imz dz = \int_{0}^{1} (1+t+2+t)(1+i) dt = 4+4i$$
.

(c)
$$\int_{\gamma} Rez + Imzdz = \int_{0}^{2\pi} (cost + sint)(-sint + icost)dt = \int_{0}^{2\pi} (icos^2t - sin^2t)dt = i\pi - \pi$$
.

- 4. Compute the following path integrals:
 - (a) $\int_{\gamma} cos(Rez)dz$ where γ is a circle around i with radius 1 with counter-clockwise orientation.
- (b) $\int_{\gamma} \frac{Logz}{z} dz \ \gamma(t) = e^{it}, \ t \in [0, \pi].$
- (c) $\int_{\gamma} (\overline{z})^n dz$ for any $n \in \mathbb{Z}$ and γ where γ is the unit circle with counterclockwise orientation.

Solution.

- (a) $\int_{\gamma} \cos(Rez)dz = \int_{0}^{2\pi} \cos(\cos\theta)i(\cos\theta + i\sin\theta)d\theta = \int_{-\pi}^{\pi} \cos(\cos\theta)\sin\theta d\theta + i\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos(\cos\theta)\cos\theta d\theta + i\int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos(\cos\theta)\cos\theta d\theta = 0.$
- (b) $Log(e^{it}) = it$ when $0 \le t < \pi$, so

$$\int_{\gamma}\frac{Logz}{z}dz=\int_{0}^{\pi}\frac{it}{e^{it}}ie^{it}dt=\int_{0}^{\pi}-tdt=-\frac{\pi^{2}}{2}.$$

- (c) On the unit circle, $\overline{z}=z^{-1}$. Thus, the integral is 0 if $n \neq 1$ and $2\pi i$ if n=1.
- 5. For any integer $n \geq 1$, prove

$$\int_0^{2\pi} \cos^{2n} t dt = 2^{1-2n} \binom{2n}{n} \pi.$$

Solution. Let γ be a curve which parametrizes the unit circle with counterclockwise orientation. We have

$$\int_{\gamma} z^{-1} (z+z^{-1})^{2n} dz = \int_{\gamma} \binom{2n}{n} z^{-1} dz + \int_{\gamma} (\text{other powers of } z) dz = 2 \binom{2n}{n} \pi i.$$

On the other hand, we have

$$\int_0^{2\pi} e^{-it} [e^{it} + e^{-it}]^{2n} i e^{it} dt = \int_0^{2\pi} 2^{2n} (\cos t)^{2n} i dt.$$

The desired equality follows immediately.

6. Give an example of a (continuous) path $\gamma:[0,1]\to\mathbb{C}$ of infinite length.

Solution. Let

$$\gamma(t) = \left\{ \begin{array}{ll} t + it \cdot sin(t^{-1}) & \text{if } t > 0, \\ 0 & \text{if } t = 0. \end{array} \right.$$

Consider the sequence $(a_n)_{n\in\mathbb{N}}$ where $a_n=\frac{2}{(2n+1)\pi}$. Then,

$$|\gamma(a_{n+1}) - \gamma(a_n)| > \frac{2}{(2n+3)\pi} + \frac{2}{(2n+1)\pi} > \frac{4}{(2n+3)\pi}.$$

So,

Length(
$$\gamma$$
) $\geq \sum_{n=0}^{\infty} |\gamma(a_{n+1}) - \gamma(a_n)| \geq \frac{4}{\pi} \sum_{n=0}^{\infty} \frac{1}{2n+3} = \infty.$

8. Let $D \subset \mathbb{C}$ be a domain. Let $\gamma: [a,b] \to D$ be a piecewise regular path such that $f \circ \gamma$ is continuous. Prove that

$$\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\dot{\gamma}(t)dt. \tag{1}$$

Solution. Step 1. We prove the following lemma:

Lemma 1. Let $g,h:[a,b] \to \mathbb{R}$ be continuous functions. Let $\Delta = \{a = t_0 < t_1 < \dots < t_n = b\}$ be a partition of [a,b] and $T = \{\tau_0,\dots,\tau_{n-1}\}$, $\Sigma = \{\sigma_0,\dots,\sigma_{n-1}\}$ be two choice of intermediate points: $\tau_i,t_i \in [t_i,t_{i+1}]$. Define

$$S(f, g; \Delta, T, \Sigma) := \sum_{j=0}^{n-1} f(\tau_j) g(\sigma_j) (t_{j+1} - t_j).$$

Then,

$$\lim_{l(\Delta)\to 0} S(f,g;\Delta,T,\Sigma) = \int_a^b g(t)h(t)dt,$$

where $l(\Delta) = \max_{0 \le j \le n-1} |t_{j+1} - t_j|$.

Proof. The proof is a standard argument involving the intermediate value theorem and the definition of the Riemann integral. \Box

Step 2. We prove another lemma

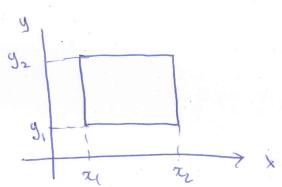
Lemma 2. Let f, γ be as above in (1). Assume that γ is regular on [a, b]. Then (1) holds.

Proof. Let $\Delta = \{a = t_0 < t_1 < \dots < t_n = b\}$ be a partition of [a,b] and $T = \{\tau_0, \dots, \tau_{n-1}\}$ be a choice of intermediate points. By Lagrange theorem, there exists $s_j, r_j \in [t_j, t_{j+1}]$ such that $x(t_{j+1}) - x(t_j) = \dot{x}(s_j)(t_{j+1} - t_j)$ and

$$y(t_{j+1}) - y(t_j) = \dot{y}(r_j)(t_{j+1} - t_j)$$
. Then,

$$S(f; \Delta, T) := \sum_{j=0}^{n-1} f(\gamma(\tau_j))(\gamma(\tau_{j+1}) - \gamma(\tau_j))$$

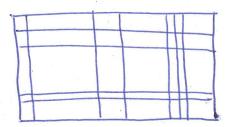
$$= \sum_{j=0}^{n-1} u(x, y)\dot{x}(s_j)(t_{j+1} - t_j) - v(x, y)\dot{y}(r_j)(t_{j+1} - t_j)$$


$$+ i\sum_{j=0}^{n-1} u(x, y)\dot{y}(r_j)(t_{j+1} - t_j) + v(x, y)\dot{x}(s_j)(t_{j+1} - t_j).$$

Using Step 1, it is easy to see that

$$\lim_{l(\Delta)\to 0} S(f;\Delta,T) = \int_a^b f(\gamma(t))\dot{\gamma}(t)dt.$$

In case the curve is only piecewise regular, then there exists a partition where the curve is regular on each interval. We can use the additivity of the integral to get the result. \Box


7. For a nectample ABCD as below, define IABOD:= \(\frac{1}{24} e^{2\pi i y} \) \(\frac{1}{2} e^{2\pi y} \) \(\frac{1}{2} e^{2\pi i y} \) \(\frac{1}{2} e^{2\pi i y} \) \(\frac{1}{2} e^{2\pi y} \) \(\frac{1}{2} e^{2\p

Note that $\int_{\Omega_1}^{\chi_2} e^{2\pi i \chi} d\chi = 0 \iff \chi_2 - \chi_1 \in \mathbb{Z}$. Therefore, IABO = 0 iff at least one of the sides of ABOD is of integer length.

Claim IABOD is an additive function. Namely, if a given rectangle ABOD is divided into smaller rectangles A:B:C:D:, then IABOD = Z:IA:B:C:D:

Pf) First, observe that it is enough to show the claim for "grid like" decompositions:

Then, by the Directify of the integral, we can easily check the additivity

Using the above Claim,

Therefore MNPQ has at least one side of theger length.