Complex Analysis Exercise 7 (Solution)

Prof. Dr. Paul Biran

Due: 01.11.2019

1. Let k be a field and p(x) be a nonconstant polynomial with coefficients in k. If $p(x_0) = 0$ for some $x_0 \in k$, show that $p(x) = (x - x_0)q(x)$ for some polynomial q(x).

Solution. We do by induction on n. When n = 1, the statement is clear. We assume that the statement holds when the degree is less than equal to n - 1. Write

 $p(z) = a_n z^n + \dots + a_0$

and let $\tilde{p}(z) = p(z) - a_n(z - z_0)^n$. The degree of $\tilde{p}(z)$ is at most n - 1. By induction hypothesis, $\tilde{p}(z) - p(z_0) = (z - z_0)\tilde{q}(z)$ for some polynomial $\tilde{q}(z)$. Substituting $\tilde{p}(z)$ back, we get the statement in degree n.

2. Use Cauchy estimates to prove the following statement: Let $f : \mathbb{C} \to \mathbb{C}$ be an entire function such that there exsits $n \in \mathbb{N}$ and R, C > 0 such that

$$|f(z)| < C|z|^n$$
, for any $|z| > R$.

Then f is a polynomial in z whose degree is less than or equal to n. Solution. Pick k = n + 1. For any $z \in \mathbb{C}$ and any r > maz(|z|, R),

$$|f^{(k)}(z)| \le \frac{k!}{2\pi} Cr^n \frac{1}{(f-|z|)^{k+1}} 2\pi r = Ck! \frac{r^{n+1}}{(r-|z|)^{n-2}} \longrightarrow 0, \ r \to \infty.$$

Therefore $f^{(n+1)} = 0$ and f is a polynomial with degree at most n (for the last statement, we can prove, for instance, by the induction on n).

3. Let $f : \mathbb{C} \to \mathbb{C}$ be a non-constant holomorphic function. Show that $f(\mathbb{C})$ is dense in \mathbb{C} .

Solution. Suppose $f(\mathbb{C})$ is not dense in \mathbb{C} , i.e. there exists $z_0 \in \mathbb{C}$ and $\epsilon > 0$ such that $B_{\epsilon}(z_0) \cap f(\mathbb{C}) =$. Then $|f(z) - z_0| \ge \epsilon$ for all $z \in \mathbb{C}$ and hence the function

$$g(z) = \frac{1}{f(z) - z_0}$$

is holomorphic and bounded. By Liouville theorem, g is constant and f is constant.

4. Prove that there is not entire function f such that $\forall z \in \mathbb{C}$, |f(z)| > |z|. Solution. Since |f(z)| > |z|, the function $g(z) = f(z)^{-1}$ is an entire function. Since g(z) is bounded, g(z) is constant. Therefore f is constant.

5. Let f be an entire function. Prove that in each of the following cases, f is constant:

- (a) f satisfies $Im(f(z)) \leq 0$ for all $z \in \mathbb{C}$
- (b) $|f(z)| \neq 1$ for all $z \in \mathbb{C}$
- (c) f does not receive any value in $\mathbb{R}^- = \{x \in \mathbb{R} | x \leq 0\}.$

Solution. (a) Let g(z) = f(z) - i. Since $Img \leq -1$, $g(z)^{-1}$ is entire and bounded. By Liouville theorem, h is constant and hence f is constant.

(b) First of all we claim that either $|f(z)| \leq 1$, $\forall z \in \mathbb{C}$ or $|f(z)| \geq 1$, $\forall z \in \mathbb{C}$. Assume by contradiction that this is not true. Namely, there exist z, w such that |f(z)| > 1 and |f(z)| < 1. Choose a path $\gamma : [0, 1] \to \mathbb{C}$ which connects the two points. Let $\phi(t) = |f(\gamma(t))|$. By intermediate value theorem, there exists t such that $\phi(t) = 1$ contradiction.

For both two cases, we can use Liouville theorem to deduce f is constant. (c) There is a holomorphic function $\phi : \mathbb{C} \setminus \mathbb{R}^- \to \mathbb{C}$ such that

$$Im\phi \subset \{z|Rez > 0\}.$$

(e.g. take a branch of \sqrt{z} and $\phi(z) = e^{\frac{1}{2}Logz}$) Then $g = \phi \circ f$ is an entire function and Re(g) > 0. Therefore, g is a constant function and f is a constant function.

6. Let $\mathbb{D} = \{z \in \mathbb{C} | |z| < 1\}$ be a unit disk. Let f be a holomorphic function on the unit disk. Assume that $|f(z)| \leq |f(z^2)|$ in \mathcal{D} . Prove that f is constant. **Solution.** On the unit disk, $|z^2| < |z|$. For 0 < r < 1, $\max\{|f(z)|||z|leqr\}$ is attained inside the disk $\{|z| < r\}$. Therefore f(z) is constain in the disk $\{|z| \leq r\}$. As we can take any r < 1, f is constant on the unit disk.

7. Let \mathbb{D} be the open disk as above. Find all biholomorphic function $f : \mathbb{D} \to \mathbb{D}$. Solution. We fist prove two lemmas.

Lemma 1. Any biholomorphic function $f : \mathbb{D} \to \mathbb{D}$ with f(0) = 0 can be written as a rotation.

Proof. By the Schwarz lemma, $|f(z)| \leq |z|$ and on the other hand, again by the Schwarz lemma, $|z| = |f^{-1}(f(z))| \leq |f(z)|$. Therefore, |f(z)| = |z| and once more by the Schwarz lemma, f is a rotation $z \mapsto e^{i\theta}z$.

Lemma 2. Let $w \in \mathbb{D}$. There exists a biholomorphic function $\psi : \mathbb{D} \to \mathbb{D}$ with $\psi(0) = w$.

Proof. Let $\psi = \frac{z+w}{\bar{w}z+1}$. It is easy to check that $\psi(\mathbb{D}) \subset \mathbb{D}$ with the inverse $\psi^{-1} = \frac{z-w}{1-\bar{w}z}$.

Let $f : \mathbb{D} \to \mathbb{D}$ be a biholomorphic function and w = f(0) and let ψ be the biholomorphic map from Lemma 2. Then $f^{-1} \circ \psi$ is a biholomorphic map fixing 0. By Lemma 1, we deduce that

$$f(z) = e^{i\theta} \frac{z+w}{\bar{w}z+1}$$

for $w \in \mathbb{D}$ and $-\pi < \theta \leq \pi$.