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1. Let k be a field and p(z) be a nonconstant polynomial with coefficients in k.
If p(xo) = 0 for some xg € k, show that p(z) = (x —x¢)q(z) for some polynomial
q(z).
Solution. We do by induction on n. When n = 1, the statement is clear. We
assume that the statement holds when the degree is less than equal to n — 1.
Write

p(z) =anz" 4+ +ag

and let p(z) = p(z) — an(z — 20)™. The degree of p(z) is at most n — 1. By
induction hypothesis, p(z) — p(z0) = (2 — 20)d(z) for some polynomial G(z).
Substituting p(z) back, we get the statement in degree n.

2. Use Cauchy estimates to prove the following statement: Let f : C — C be
an entire function such that there exsits n € N and R,C > 0 such that

|f(2)| < Clz|", for any |z| > R.

Then f is a polynomial in z whose degree is less than or equal to n.
Solution. Pick k =n + 1. For any z € C and any r > maz(|z|, R),

Mo ! orr— CHl— " 0
—COr"————=2mr = Ck!V————— — 0, r = oo.
2 (f — |2[)FH? (r—|z[)n—2

1fP(2)] <
Therefore f("+1) =0 and f is a polynomial with degree at most n (for the last
statement, we can prove, for instance, by the induction on n).

3. Let f: C — C be a non-constant holomorphic function. Show that f(C) is
dense in C.

Solution. Suppose f(C) is not dense in C, i.e. there exists zp € C and € > 0
such that B.(zo) N f(C) =. Then |f(z) — 29| > € for all z € C and hence the
function



is holomorphic and bounded. By Liouville theorem, g is constant and f is
constant.

4. Prove that there is not entire function f such that Vz € C, |f(2)] > |z|-.
Solution. Since |f(z)| > |z|, the function g(z) = f(2)~! is an entire function.
Since g(z) is bounded, g(z) is constant. Therefore f is constant.

5. Let f be an entire function. Prove that in each of the following cases, f is
constant:

(a) f satisfies Im(f(z)) <0 forall z€ C
(b) |f(z)|# 1forall ze C
(¢) f does not receive any value in R~ = {z € Rjz < 0}.

Solution. (a) Let g(2) = f(z) —i. Since Img < —1, g(2)~! is entire and
bounded. By Liouville theorem, h is constant and hence f is constant.
(b) First of all we claim that either |f(z)| < 1, Vz € C or |f(z)| > 1, Vz € C.
Assume by contradiction that this is not true. Namely, there exist z,w such
that [f(z)| > 1 and |f(2)| < 1. Choose a path v : [0,1] — C which connects the
two points. Let ¢(t) = |f(v(t))]. By intermediate value theorem, there exists ¢
such that ¢(t) = 1 contradiction.

For both two cases, we can use Liouville theorem to deduce f is constant.
(¢) There is a holomorphic function ¢ : C\ R~ — C such that

Im¢ C {z|Rez > 0}.

(e.g. take a branch of /z and ¢(z) = €2£°9%) Then g = ¢ o f is an entire
function and Re(g) > 0. Therefore, g is a constant function and f is a constant
function.

6. Let D = {z € C||z|] < 1} be a unit disk. Let f be a holomorphic function on
the unit disk. Assume that |f(z)| < |f(2?)] in D. Prove that f is constant.
Solution. On the unit disk, |2%| < |z]. For 0 < r < 1, max{|f(2)||z|legr}
is attained inside the disk {|z| < r}. Therefore f(z) is constain in the disk
{]z| < r}. As we can take any r < 1, f is constant on the unit disk.

7. Let D be the open disk as above. Find all biholomorphic function f : D — D.
Solution. We fist prove two lemmas.

Lemma 1. Any biholomorphic function f : 1D — D with f(0) = 0 can be written
as a rotation.



Proof. By the Schwarz lemma, |f(z)| < |z| and on the other hand, again by the
Schwarz lemma, |z| = [f~'(f(2))] < |f(2)|. Therefore, |f(2)| = [2| and once
more by the Schwarz lemma, f is a rotation z — e z. O

Lemma 2. Let w € D. There exists a biholomorphic function ¢ : D — D with
$(0) = w.

Proof. Let ¢ = 5;7:01 It is easy to check that (D) C D with the inverse

w—l — Z=w O

1—wz"

Let f : D — D be a biholomorphic function and w = f(0) and let ¢ be the
biholomorphic map from Lemma 2. Then f~! o1 is a biholomorphic map fixing
0. By Lemma 1, we deduce that

f(z):e wz + 1

forweDand -7 <0 <.



