Complex Analysis Exercise 8 (Solution)

Prof. Dr. Paul Biran

Due: 08.11.2019

1. Let Log(z) = ln|z| + iArg(z) with $-\pi < Arg(z) \le \pi$ denote the main branch of the complex logarithm. For which z, w and $k \in \mathbb{Z}$ do the following identities hold?

- (a) Log(z.w) = Log(z) + Log(w),
- (b) $Log(z^k) = kLog(z),$
- (c) exp(Log(z)) = z,
- (d) Log(exp(z)) = z,
- (e) $Log'(z) = \frac{1}{z}$.

Solution. (a) Log(z.w) = ln|z| + ln|w| + iArg(z.w), so we have Log(z.w) = Log(z) + Log(w) if and only if $-\pi < Arg(z) + Arg(w) \le \pi$. (b) $Log(z^k) = kLog(z)$ if and only if $Arg(z^k) = kArg(z)$, i.e. $-\frac{\pi}{k} < Arg(z) \le \frac{\pi}{k}$. (c) Let $z = re^{i\phi}$. Then $Log(z) = ln(r) + i\phi$ and $exp(Log(z)) = e^{ln(r)+i\phi}$, so exp(Log(z)) = z for all z. (d) Let z = x + iy. Then $exp(z) = e^x e^{iy}$ and $Log(exp(z)) = ln(e^x) + iArg(e^{iy})$, so Log(exp(z)) = z if and only if $-\pi < y \le \pi$. (e) Log(z) is differentiable and a primitive of z^{-1} exactly on $\mathbb{C} \setminus \mathbb{R}_{\le 0}$, so $Log'(z) = \frac{1}{z}$ if and only if $Arg(z) \neq \pi$.

2. (a) Let z_1, \dots, z_r be distinct points and $m_i \in \mathbb{Z}$. Let $D \subset \mathbb{C} \setminus \{z_1, \dots, z_r\}$ be a domain. Consider a rational function $f: D \to \mathbb{C}$

$$f(z) = (z - z_1)^{m_1} \cdots (z - z_r)^{m_r}.$$

Prove that there exists a branch of log(f) if and only if

$$m_1 I_\gamma(z_1) + \dots + m_r I_\gamma(z_r) = 0$$

for every closed path γ in D.

- (b) Decide whether or not there exists a branch of $log(f_i)$ on D_i for
 - $f_1(z) = \frac{z-z_1}{z-z_2}$,

- $f_2(z) = (z z_1)^{m_1} (z z_2)^{m_2} (z z_3)^{m_3}$,
- $f_3(z) = (z z_1)(z z_2).$

Solution. (a) The function f is rational function that is everywhere defined on D, so it is holomorphic. We can use the criterion that there is a branch of log(f) on D if and only if the integral $\int_{\gamma} \frac{f'}{f} dz = 0$ for every closed path γ in D. We have

$$\frac{f'(z)}{f(z)} = \sum_{i=1}^{r} \frac{m_i}{z - z_i}$$

an thus if γ is a closed path in D,

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \sum_{i=1}^{r} m_i I_{\gamma}(z_i).$$

This shows that a branch of log(f) exists if and only if $\sum_{i=1}^{r} m_i I_{\gamma}(z_i)$. (b-1) Because z_1, z_2 are in the same connected component of $\mathbb{C} \setminus D_1$, they are also in the same connected component of $\mathbb{C} \setminus \gamma$ for every closed path γ in D_1 . Because $I_{\gamma}(z)$ is constant on connected components of $\mathbb{C} \setminus \gamma$, we have $I_{\gamma}(z_1) = I_{\gamma}(z_2)$, hence

$$m_1 I_{\gamma}(z_1) + m_2 I_{\gamma}(z_2) = I_{\gamma}(z_1) - I_{\gamma}(z_2) = 0.$$

By (a), there exists a branch of $log(f_1)$.

(b-2) We claim that $I_{\gamma}(z_2) = I_{\gamma}(z_3)$ and $I_{\gamma}(z_1) = 0$ for every closed path γ in D_2 . The first part follows from the same argument as before. Since z_1 lies in the unbounded component of $\mathbb{C} \setminus \gamma$, $I_{\gamma}(z_1) = 0$. There exists a branch of $log(f_2)$ if and only if $m_2 + m_3 = 0$.

(b-3) Let γ be any path that revolves (say, positively) around z_1 exactly once and that does not revolve around z_2 . Then $m_1I_{\gamma}(z_1) + m_2I_{\gamma}(z_2) = 1 \neq 0$, so there does not exist a branch of f_3 on D_3 .

3. Prove that $f(z) = \sqrt{\frac{z-1}{z+1}}$ has a branch in $D = \mathbb{C} \setminus [-1, 1]$. **Solution.** There exists a branch of $Log(\frac{z-1}{z+1})$ in the domain. Indeed [-1, 1] belongs to the same connected component of $\mathbb{C} \setminus \gamma$ for any γ in D. Thus $I_{\gamma}(1) = I_{\gamma}(-1)$. Let g be such a branch, then $e^{\frac{1}{2}g(z)}$ is a branch of $\sqrt{\frac{z-1}{z+1}}$.

4. (a) An open set $D \subset \mathbb{C}$ is *star-shaped* if there exists a point $z_0 \in D$ such that for any $z \in D$, the straight line segment between z and z_0 is contained in D. Prove that a star-shaped open set is simply connected.

(b) Give an example of open set that are not star-shaped but simply connected.

Solution.(a) We may assume $z_0 = 0 \in \mathbb{C}$. For any close path γ in D,let $H(t,s) = s\gamma(t) \ 0 \le s \le 1$. Then H is a homotopy between γ and the constant path at 0. Therefore D is simply connected. (b) For instance, take $D = \mathbb{C} \setminus \mathbb{R}_{\le 0}$.