Complex Analysis Exercise 9 (Solution)

Prof. Dr. Paul Biran

Due: 15.11.2019

1. Let $\gamma : [a, b] \to \mathbb{C}$ and $\lambda : [b, c] \to \mathbb{C}$ be two C^1 curves such that $\gamma(b) = \lambda(b)$. Prove that there exists a reparametrization of the curve $\gamma + \lambda$ which is C^1 (Here we allow a reparametrization such that $\gamma'(t_0) = 0$)

Solution. Take a nondecreasing smooth function $phi : [a, c] \to [a, c]$ such that $\phi(a) = a, \phi(c) = c$ and $\phi'(b) = b$. Then $(\gamma + \lambda) \circ \phi$ is C^1 .

2. (a) Prove that the sequence $f_n(z) = z^n$, $n \ge 1$ converges locally uniformly but not uniformly on $\{z : |z| < 1\}$.

(b) Let $f: \mathbb{C} \to \mathbb{C}$ be an arbitrary (not necessarily continuous) function and for $n \in \mathbb{N}$ define $f_n: \mathbb{C} \to \mathbb{C}$

$$f_n(z) = \begin{cases} f(z) & \text{if } |z| \le n, \\ 0, & \text{if } |z| > n. \end{cases}$$

Show that the sequence (f_n) converges pointwise and locally uniformly to f, and that it converges uniformly to f, if and only if $\lim_{|z|\to\infty} f(z) = 0$.

(c) Give an example of a sequence $(f_n)_{n \in \mathbb{N}}$ of continuous functions $\mathbb{C} \to \mathbb{C}$ that converges to some function $f : \mathbb{C} \to \mathbb{C}$ that is not continuous.

(d) Give an example of a sequence $(f_n)_{n \in \mathbb{N}}$ of differentiable functions $f_n : \mathbb{R} \to \mathbb{R}$ that converges to a differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f_n(x) dx \neq \int_{-\infty}^{\infty} f(x) dx.$$

Solution. (a) Because $z^n \to 0$, $n \to \infty$ for every |z| < 1, $f_n \to 0$ pointwise. Convergence is not uniform since $\sup_{|z|<1} |f_n(z) - 0| = 1$. Recall that locally uniform convergence is equivalent to uniform convergence on compact subsets. Let K be a compact subset of the open unit disk. Put $r = \max_{z \in K} |z|$. Then

$$max_{z \in K} |f_n(z) - 0| = max_{z \in K} |z^n| = r^n \to 0, \ n \to \infty.$$

Therefore $f_n \to 0$ uniformly on K and f_n converges locally uniformly. (b) Let $K \subset \mathbb{C}$ be a compact subset and let $r = \max_{z \in K} |z|$. Then for all $z \in K$, the sequence $f_n(z)$ becomes stationary and equal to f(z) for $n \geq r$. So (f_n) converges uniformly on compact subset of $\mathbb C$ and it converges locally uniformly on $\mathbb C.$

Moreover, (f_n) converges uniformly on \mathbb{C} if and only if

$$\lim_{n \to \infty} \sup_{|z| > n} |f(z)| = 0,$$

Because $|f_n(z) - f(z)| = 0$, if $|z| \le n$ and $|f_n(z) - f(z)| = |f(z)|$, if |z| > n, this is equivalent to

$$\lim_{n \to \infty} \sup_{|z| > n} |f(z)| = 0,$$

which is just saying $\lim_{n\to\infty} f(z) = 0$. (c) Let $f_n : \mathbb{C} \to \mathbb{R} \subset \mathbb{C}$ such that $f_n(z) = \min\{|z^n|, 1\}$. All f_n are continuous but the limit

$$lim_{n \to \infty} f_n(z) = f(z) = \begin{cases} 0, & \text{if } |z| < 1, \\ 1, & \text{if } |z| \ge 1, \end{cases}$$

is not continuous.

(d) Consider a bump function

$$f_n(x) = \begin{cases} 0, & \text{if } x < n, \\ 30(x-n)^n - 60(x-n)^3 + 30(x-n)^4, & \text{if } n \le x \le n+1 \\ 0, & \text{if } x > n+1. \end{cases}$$

Then (f_n) converges pointwise to the constant zero function, but $\int_{-\infty}^{\infty} f_n(x) dx = 1$ for all n.

3. Prove that the series $\zeta(z) = \sum_{n=1}^{\infty} \frac{1}{n^z}$ converges locally uniformly on the domain $\{z : Re(z) > 1\}$. What is the derivative $\zeta'(z)$ in terms of a series expansion?

Solution. Let K be a compact subset in $\{z : Re(z) > 1\}$. Denote $a = min_{z \in K}Re(z) > 1$. Then

$$|\frac{1}{n^z}| \le |\frac{1}{n^a}|$$

in K. $\sum_{n=1}^{\infty} \frac{1}{n^a}$ converges for every a > 1 by the integral criterion. Therefore $\zeta(z)$ converges uniformly on K by the Weierstrass criterion and it converges locally uniformly in the domain.

From this follows that ζ is holomorphic. One checks that $\frac{d}{dz}\frac{1}{n^z} = -ln(n)\frac{1}{n^z}$ and that the series

$$\xi(z) := \sum_{n=1}^{\infty} -ln(n)\frac{1}{n^z}$$

converges locally uniformly in the domain. Therefore ξ defines a holomorphic function. Morefore, since the partial sum $f_k = \sum_{n=1}^k \frac{1}{n^z}$ is a primitive of $f'_k = \sum_{n=1}^k -\frac{\ln(n)}{n^z}$ and because locally uniform convergence preserves path integrals, $\zeta(z)$ is a primitive of $\xi(z)$.

4. Let f be a holomorphic function on $D = \{z : |z| < 1\}$ with f(0) = 0. Prove that the series $\phi(z) = \sum_{n=1}^{\infty} f(z^n)$ converges locally uniformly on D. **Solution.** We first prove that ϕ converges uniformly on $\{|z| \le R\}$. For $|z| < \frac{1}{2}$,

$$|f(z)| = |\int_{[0,z]} f'(t)dt + f(0)| \le M|z|$$

where $M = \max_{|t| < \frac{1}{2}} |f'(t)|$. Take N be an integer bigger than $\log_R(\frac{1}{2})$. Then

$$\phi(z) = \sum_{n=1}^{N} f(z^{n}) + \sum_{n=N+1}^{\infty} f(z^{n})$$

which converges uniformly on $|z| \leq R$ by the Weierstrass criterion. Let $K \subset D$ be a compact subset. Then there exists R < 1 such that $K \subset \{|z| \leq R\}$. Therefore ϕ converges uniformly on each compact subset K and it converges locally uniformly on D.

5. (a) Prove that the power series $f(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!} : \mathbb{C} \to \mathbb{C}$ converges absolutely and locally uniformly on \mathbb{C} .

(b) Is the converse of Weierstrass M-test true in general?

Solution. (a) We can use the Weierstrass M-test. Let $K \subset \mathbb{C}$ be a compact subset and let $r = max\{|z| : z \in K\}$. Then

$$|f(z)| \le \sum_{n=0}^{\infty} \frac{r^n}{n!} = e^r.$$

(b) No, the converse of Weierstrass M-test may not be true. Take a summation of constant functions $\sum_{n=1}^{\infty} a_n$ where $a_{2n-1} = n$ and $a_{2n} = (-1)n$.