Exercise Sheet 13

Prof. Dr. Alessandro Sisto Assistant: Davide Spriano

Let A be a finitely generated abelian group. The *tensor product* $A \otimes \mathbb{Q}$ is the abelian group generated by the symbols $a \otimes k$ for $a \in A$ and $q \in \mathbb{Q}$ subject to the relations

$$a \otimes q + b \otimes q = (a + b) \otimes q$$
$$a \otimes q + a \otimes k = a \otimes (q + k)$$

Note: \mathbb{Q} can be substituted with \mathbb{R} in this exercise sheet.

Question 1:

Let

$$0 \to A \to B \to C \to 0$$

be a short exact sequence of finitely generated abelian groups. Show that

$$0 \to A \otimes \mathbb{Q} \to B \otimes \mathbb{Q} \to C \otimes \mathbb{Q} \to 0$$

is exact. In particular, conclude that if C_{\bullet} is a chain complex of finitely generated abelian groups, then $C_{\bullet} \otimes \mathbb{Q}$ is a chain complex.

Question 2:

Let C_{\bullet} be a chain complex of finitely generated abelia groups. Show that

$$H_n(C_{\bullet} \otimes \mathbb{Q}) \cong H_n(C_{\bullet}) \otimes \mathbb{Q}.$$

Conclude that if X is a CW complex such that $X^{(n)}$ has finitely many cells for every n, then

$$H_n(X;\mathbb{Q})\cong H_n(X)\otimes\mathbb{Q}.$$