Algebraic Topology

Prof. Dr. Alessandro Sisto Assistant: Davide Spriano

Question 1:

Let X be a topological space, and suppose $X = \bigsqcup_{i \in I} X_i$, where each X_i is a pathconnected component. Show that $H_n(X) = \bigoplus_{i \in I} H_n(X_i)$.

Solution:

Recall that for a topological space Y we denote with $\Delta_n(Y)$ the free abelian group with basis the singular *n*-simplices of Y. Recall that an element of $\Delta_n(Y)$ is an *n*-chain, i.e. a finite formal sum $\rho = \sum a_\sigma \sigma$, where $a_\sigma \in \mathbb{Z}$ and σ is a singular *n*-simplex, i.e. a map $\sigma: \Delta_n \to Y$. Observe that since $X_i \subseteq X$, every singular simplex of X_i is also a singular simplex of X. Moreover, given a finite collection of singular chains $\{\rho_i\}$ such that $\rho_i \in \Delta_n(X_i)$, we can associate to them an element ρ of $\Delta_n(X)$ simply as $\rho = \sum \rho_i$. Since each ρ_i is a finite sum, so it is ρ . Observe that the group $\bigoplus_{i \in I} \Delta_n(X_i)$ consists of finite sums $\sum \sigma \rho_i$, where $\rho_i \in \Delta_n(X_i)$. By the above reasoning we can define a group homomorphism

$$f: \bigoplus_{i \in I} \Delta_n(X_i) \to \Delta_n(X).$$

From the definition of $\Delta_n(X)$, it follows that f is injective. For a chain to be equal to zero, it is necessary that the sum of the coefficients of each singular n-simplex is zero. But since for $i \neq j$ the spaces X_i and X_j are disjoint, no cancellations are possible between the elements of $\Delta_n(X_i)$ and $\Delta_n(X_j)$.

Note that for this part we did not use any assumption on path connectivity. Indeed, whenever there is a topological space Y that can be written as $Y = \bigsqcup Y_i$, there is always an injective homomorphism $f: \bigoplus_{i \in I} \Delta_n(Y_i) \rightarrow \Delta_n(Y)$. <u>Warning!</u> This does not imply that there is an injective map between the homologies! This is a good check to see if you understood the definition of homology.

The connectivity assumptions will allow us to show that in this case it is an isomorphims, namely

$$f: \bigoplus_{i \in I} \Delta_n(X_i) \xrightarrow{\cong} \Delta_n(X).$$

Recall that if Y is a path connected topological space and $h: Y \to Z$

is a continuous map, then the image of Y is contained in a path-connected component of Z.

Consider an *n*-chain $\rho = \sum n_{\sigma}\sigma$. Recall that σ is a singular *n*-simplex, i.e. a map $\sigma: \Delta_n \to X$. Since Δ_n is path-connected, the image of σ is contained in some X_i . For every $i \in I$, let ρ_i be the *n*-chain obtained considering only the singular simplices of ρ with image in X_i . We have

$$\rho = \sum \rho_i.$$

Since ρ is a finite sum, there are only finitely many ρ_i , each of which is a finite sum. This shows that every $\rho \in \Delta_n(X)$ is in the image of f, showing that f is surjective, thus an isomorphism.

We will now show that this induces an isomorphism between homologies. Since ∂ is a group homomorphism, we have

$$\partial\left(\sum a_{\sigma}\sigma\right) = \sum a_{\sigma}\left(\partial\sigma\right)$$

Thus $\partial \rho = \sum \partial \rho_i$. We claim that $\partial \rho = 0$ if and only if $\partial \rho_i = 0$ for all *i*. Consider two singular simplices σ_1 and σ_2 and suppose that they share a face. This means that $\sigma_1^{(i)} = \sigma_2^{(j)}$ as functions. Thus, since their images intersect, they belong to the same connected component. In particular, there cannot be cancellations between elements of $\partial \rho_i$ and $\partial \rho_j$ for $i \neq j$, which proves the claim.

Similarly, if the image of σ is contained in X_i , so it is the image of $\partial \sigma$. Thus, a singular chain ρ is a cycle if and only if all ρ_i are, and similarly for boundaries. In particular, this shows that cycles and boundaries of X are exactly the sums of cycles and boundaries of X_i , showing that two cycles of X differ by a boundary (i.e. they represent the same homology class) if and only if each of their X_i components differ by a boundary. This concludes the proof.