
Algebraic Topology Exercise Sheet 2
Prof. Dr. Alessandro Sisto
Assistant: Davide Spriano

Question 1:

Let X be a topological space and f : [0, 1]→ X be a path (recall, this means f is
continuous). Show that f + f−1 is a 1–boundary in two different ways:

1. combining lemmas proven in class,

2. finding an explicit 2-chain whose boundary is f + f−1.

Solution:
Solution 1: Observe that f +f−1 is a boundary if and only if JfK+ Jf−1K = 0
in H1(X). By Lemma 2 of the lecture we have JfK + Jf−1K = Jf ∗ f−1K. Let
x = f(0). Then f ∗ f−1 is homotopic relative to x to the constant path cx. By
Lemma 1 we have Jf ∗ f−1K = JcxK. By Lemma 0, JcxK = 0, which concludes
the first proof.

Solution 2: Let σ : ∆2 → X be the singular simplex defined as follows:

σ(λ0e0 + λ1e1 + λ2e2) = f(λ1),

and let σ0 : ∆2 → X be the simplex with constant value f(0). Let ρ = σ + σ0.
We claim that ∂ρ = f + f−1, which provides the result. Firstly, observe that
∂σ = f + f−1 − cf(0). Indeed, let s0, s1 be a basis for ∆1. Then

σ(0) : ((1− t)s0 + ts1) 7→ (0e0 + (1− t)e1 + te2) 7→ f(1− t)
σ(1) : ((1− t)s0 + ts1) 7→ ((1− t)e0 + 0e1 + te2) 7→ f(0)

σ(2) : ((1− t)s0 + ts1) 7→ ((1− t)e0 + te1 + 0e2) 7→ f(t).

Reasoning as in Question 2, we obtain that ∂σ0 = cf(0). Thus, ∂τ = f−1 + f −
cf(0) + cf(0) = f−1 + f . Attention! It is not true that ∂σ = f + f−1, because it
is not true that f−1 + f + cf(0) = f−1 + f in ∆1(X). The equality only holds
in H1(X).
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Question 2:

Let X be a topological space, x ∈ X a point and for each n consider the constant
singular simplex cn : ∆n → X with constant value x (that is the map that sends
every point of ∆n to x).

When is cn a boundary?

Solution:
First, we compute when cn is a cycle. Since cn is the constant simplex on x, all
of its faces are cn−1, i.e. the constant function ∆n−1 → {x}. Then for n ≥ 1
we have

∂cn =
n∑

i=0

(−1)ic(i)n =
n∑

i=0

(−1)icn−1 =

{
0 if n is odd;

cn−1 if n is even.

Thus, for n odd we have that cn = ∂cn+1 showing that it is a boundary. For n
even, we have that cn is not even a cycle, in particular not a boundary. Thus
cn is a boundary precisely when it is a cycle and precisely in odd degrees.

Question 3:

Let F2 be the free group on two generators. Show that the abelianization of F2 is
Z2. As a remark, observe that the proof also works to show that the abelianization
of Fn is Zn.

Solution:
Let F2 be generated by a, b and let Z2 be generated by x, y. Recall that F2 is
defined as follows: the elements of F2 are words in the letters a, b, a−1, b−1,
under the equivalence relation uaa−1v ∼ ua−1av ∼ ubb−1v ∼ ub−1bv ∼ uv,
where u and v are any words.

Given an element g ∈ F2, let φa(g) be the sum with sign of all the occur-
rences of the letter a in a word w representing g. Note that the equivalence
relation preserves the exponent sum, so if w′ ∼ w both represent the element
g, then their exponent sum will be the same. Let φb be defined similarly for b.
Consider the map

φ : F2 → Z2

g 7→ (φa(g), φb(g)).
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We claim that it is a group homomorphism. Let g, h ∈ F2, choose a repre-
sentative v for g and w for h, and consider vw. It is clear that the number
of occurrences of the letter a in vw precisely coincide with the number of oc-
currences of a in v plus the ones in w, and similarly for a−1. Since vw is a
representative of gh, and since the exponent sum does not depend on the choice
of representative, we get

φa(gh) = φa(g) + φa(h),

and similarly for φb. Thus φ is a group homomorphism. We claim that the
kernel of φ coincides with the commutator subgroup [F2, F2]. Indeed, this
would imply F2/[F2, F2] ∼= Z2.

The kernel of φ consists of those elements of F2 which are both in the kernel
of φa and φb, namely those elements g that can be represented by a word which
has the same number of occurrences of a, a−1 and the same number of occur-
rences of b, b−1, for example aab−1a−1a−1b. Let’s call this set

∑
. Observe that

[F2, F2] ≤
∑

. Indeed, [F2, F2] is generated by elements of the form ghg−1h−1,
which is not hard to see that belong to

∑
. Now, let g ∈ F2 be such that g ∈

∑
and let w be a shortest representative of g. We will show by induction on the
length of w that it can be written as a product of commutators. First observe
that w needs to have even length.

Base case: If the length of w is less or equal to 4, and w is minimal in its
equivalence class, then w is either empty of a commutator (this can be done
by hand by just listing all words of length at most 4 with zero exponent sum).

Induction step: The strategy is going to be the following. We will find z
which represents an element of [F2, F2] such that, after performing reduction,
wz is a shorter word with exponent sum zero. The induction hypothesis then
yields wz ∈ [F2, F2]. Since we picked z ∈ [F2, F2], we conclude that w ∈
[F2, F2], which will complete the proof.

To simplify notation, let A = a−1 and B = b−1. Consider w with zero
exponent sum. If all the letters of w are in {a,A}, the fact that w has zero
exponent sum and it is the shortest representative yield that w is the empty
word, and similarly for {b, B}. Then, up to exchanging the roles of a and A,
we can write w as tauAv, for some words t, u and v. Let z = [v−1a, u−1]. Then:
We have

wz = tauAv[v−1a, u−1] = tauAvv−1au−1Avu = tvu

It is straightforward to verify that tvu has still exponent sum zero, concluding
the proof.
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