Prof. Dr. Alessandro Sisto Assistant: Davide Spriano

Note: with the notation $X \sqcup Y$, we mean the topological space where the sets X, Y are clopen, and the inclusions $X \to X \sqcup Y, Y \to X \sqcup Y$ are homeomorphisms on their images.

Question 1:

Let X_i be topological spaces and $X = \bigsqcup X_i$. Let $A_i \subseteq X_i$ be a family of subsets and for each i let $j_i: X_i \to X$ be the inclusion.

- 1. For H_* the singular homology, show that $\bigoplus (j_i)_* : \bigoplus H_p(X_i, A_i) \to H_p(X, \bigcup A_i)$ is an isomorphism.
- 2. Prove the following lemma and use it to show that (1) holds for any homology theory.

Lemma 1.1 (5-lemma). Consider the following commutative diagram of abelian groups:

$$\begin{array}{cccc} A & \longrightarrow & B & \longrightarrow & C & \longrightarrow & D & \longrightarrow & E \\ \downarrow^{r} & \cong \downarrow^{s} & & \downarrow^{t} & \cong \downarrow^{u} & & \downarrow^{v} \\ A' & \longrightarrow & B' & \longrightarrow & C' & \longrightarrow & D' & \longrightarrow & E' \end{array}$$

If the rows are exact, the maps s, u are isomorphisms, r is surjective and v is injective, then t is an isomorphism.

Solution:

Part 1: We will show that for each *n* the inclusion j_i induces an isomorphism $\oplus(j_i)_*$: $\bigoplus(\Delta_n(X_i)/\Delta_n(A_i)) \to \Delta_n(X)/\Delta_n(\bigcup A_i)$. Since the set of the $(j_i)_*$ s forms a chain map, this implies that the homologies of the two chain complexes are isomorphic via the maps $(j_i)_*$. By the definition of $\Delta_n(Z)$, the only thing that we need to show is that the inclusion maps induce isomorphisms $\bigoplus \Delta_n(X_i) \cong \Delta_n(X)$ and $\bigoplus \Delta_n(A_i) \cong \Delta_n(A)$. This was done in Exercise Sheet 1, Question 1, yielding the result.

5-lemma: With an abuse of notation, we will call all horizontal maps ∂ . Let $0 \neq c \in C$ be a group element. We will show that $t(c) \neq 0$. Let $\partial(c) \in D$. If $\partial(c) \neq 0$, so $u(\partial(c)) \neq 0$. However, by commutativity of the diagrams, we have $\partial(t(c)) \neq 0$, and so $t(c) \neq 0$. So suppose $\partial(c) = 0$. By exactness, there is $0 \neq b \in B$ such that $\partial(b) = c$. Consider s(b). If $\partial(s(b)) \neq 0$, then we are done by commutativity. Otherwise, there is a' such that $\partial(a') = s(b)$. Since r is surjective and s is an isomorphism, there exists $a \in A$ such that $\partial(r(a)) = s(b)$, and so $\partial(a) = b$. However, this implies $c = \partial \partial a = 0$, which is a contradiction.

The argument to show that t is surjective is analogous.

Part 2: Let $A = \bigcup A_i$. By the additivity axiom, the inclusions induce isomorphisms $\bigoplus H(X_i) \to H(X)$ and $\bigoplus H(A_i) \to H(\bigcup A)$. The long exact sequence of the pair yields:

$$\begin{array}{cccc} \bigoplus H(A_i) & \longrightarrow \bigoplus H(X_i) & \longrightarrow \bigoplus H(X_i, A_i) & \longrightarrow \bigoplus H(A_i) & \longrightarrow \bigoplus H(X_i) \\ & & \downarrow \cong & & \downarrow \oplus (j_i)_* & & \downarrow \cong & & \downarrow \cong \\ & H(A) & \longrightarrow H(X) & \longrightarrow H(X, A) & \longrightarrow H(A) & \longrightarrow H(X) \end{array}$$

The result now follows from 5-lemma.

Question 2:

Consider a CW-complex K, possibly not of finite dimension. For the singular homology, show that the inclusion i of $K^{(n)}$ in K induces isomorphisms $i_* \colon H_p(K^{(n)}) \to H_p(K)$ for all p < n.

Hints:

1. You can use the following fact: for $m \ge n+1$ the following is an isomorphism:

$$H_n(K^{(n+1)}) \xrightarrow{i_*} H_n(K^{(m)}).$$

2. Use fact (1) to show that the following is an isomorphism:

$$H_n(K^{(n+1)}) \xrightarrow{\imath_*} H_n(K).$$

Solution:

We to indicate the inclusion from the *n* to *m* skeleton we use $i_{n,m}$, with the convention $K^{(\infty)} = K$. We start by showing that $(i_{n+1,\infty})*: H_n(K^{(n+1)}) \to H_n(K)$. is surjective. Let $c = \sum n_\sigma \sigma$ be a singular chain of *K*. We know that there exists *N* such that every singular simplex σ of *c* has image in $K^{(N)}$. Let $[\![c]\!]_{\infty}$ denote the class of *c* in $H_n(K)$ and $[\![c]\!]_N$ the class of *c* in $H_n(K^{(N)})$. Observe that this is well defined. If *c* is a homology class of *K*, it means that $\partial c = 0$, which is still true in the chain complex of $K^{(N)}$, since the image of ∂c is contained in the image of *c*. Let $i_{n+1,N}$ be the inclusion $K^{(n+1)} \to K^{(N)}$. By fact one, it induces an isomorphism at the level of homology. Thus, there is *c'* such that $(i_{n+1,N})([\![c']\!]_{n+1}) = [\![c]\!]_N$. Note that the composition $i_{N,\infty} \circ i_{n+1,N}$ coincides with the inclusion $i_{n+1,\infty}: K^{(n+1)} \to K$. In particular

$$(i_{n+1,\infty})_*(\llbracket c' \rrbracket_{n+1}) = \llbracket c \rrbracket_{\infty}.$$

To show injectivity, let c' be singular chain of $K^{(n+1)}$ such that $\partial c' = 0$, and assume that $i_*(\llbracket c' \rrbracket_{n+1}) = 0$ in $H_n(K)$. Then there exists a singular chain c of K such that $\partial c = (i_{n+1,\infty})_*c'$. Reasoning as before, we need to have that c is contained in $K^{(N)}$, for some N. We use this fact to show that $\partial c = c'$, yielding the result.

To conclude the exercise, consider the following commutative diagram, where 3 out of 4 maps are isomorphisms.

$$\begin{array}{ccc} H_p(K^{(p+1)}) & \xrightarrow{i_{p+1,n}} & H_p(K^{(n)}) \\ & & & \downarrow_{i_{p+1,\infty}} & & \downarrow_{i_{n,\infty}} \\ & & & H_p(K) & \xrightarrow{\mathrm{Id}} & H_p(K) \end{array}$$

Question 3:

Let A, B, C be abelian groups, and consider the following short exact sequence:

$$0 \to A \xrightarrow{i} B \xrightarrow{j} C \to 0$$

- 1. Suppose that there is a splitting $p: C \to B$, i.e. a map such that $j \circ p: C \to C = \mathrm{Id}_C$. Show that $B \cong A \oplus C$.
- 2. Suppose that there is a splitting $p: B \to A$, i.e. a map such that $p \circ i: A \to A = \operatorname{Id}_A$. Show that $B \cong A \oplus C$.

Solution: Let $r = p \circ j \colon B \to B$. Let $b \in B$ and write

$$b = (b - r(b)) + r(b).$$

Observe that $r(b) \in p(C)$ and $b - r(b) \in \ker(r)$. This gives us an injective map $f: B \to p(C) \bigoplus \ker(r)$. Indeed, suppose there are b, b' such that r(b) = r(b') and b - r(b) = b' - r(b'). Then b = b'.

By the property of p, we have that p is injective, and thus $\operatorname{Im}(p) \cong C$ and $\ker(r) = \ker(j)$. By exactness i is injective and thus $\ker(r) = \ker(j) = \operatorname{Im}(i) \cong A$. This gives us an injective map $f: B \to A \bigoplus C$. We need to show that the map is surjective. Let $a \in a$ and $c \in C$ and consider b = i(a) + p(c). Then r(i(a) + p(c)) = p(c) and leading that f(i(a) + p(c)) = a + c.

The other case is completely analogous, just consider $s = j \circ p$ instead of r, and exchange the roles of A and C.

Alternatively, after constructing in a similar way a map from B to $A \bigoplus C$, one can consider the following diagram:

and observing that the two rows are exact, all vertical maps but the central are isomorphisms, and the diagram commutes. Then the result follows from the 5-lemma. (Note, this is probably more work than how it is written above).