Algebraic Topology Exercise Sheet 5
Prof. Dr. Alessandro Sisto
Assistant: Davide Spriano

Note: with the notation X LY, we mean the topological space where the sets
X, Y are clopen, and the inclusions X — XUY,Y — X UY are homeomorphisms
on their images.

Question 1:

Let X; be topological spaces and X = | | X;. Let A; C X; be a family of subsets
and for each 7 let j;,: X; — X be the inclusion.

1. For H, the singular homology, show that @ (j;).: @ H,(X;, A;) = H,(X, U A:)

is an isomorphism.

2. Prove the following lemma and use it to show that (1) holds for any homology
theory.

Lemma 1.1 (5-lemma). Consider the following commutative diagram of
abelian groups:

A s B s C s D s B
lr %ls lt Elu \[v
A’ s B’ s O s D/ s |/

If the rows are exact, the maps s,u are isomorphisms, v is surjective and v
1s injective, then t is an isomorphism.

Solution:

Part 1: We will show that for each n the inclusion j; induces an isomorphism
D(Ji)e: BALX:)/AR(A)) = AL(X)/AL(UA;). Since the set of the (j;).s
forms a chain map, this implies that the homologies of the two chain com-
plexes are isomorphic via the maps (j;).. By the definition of A, (Z), the only
thing that we need to show is that the inclusion maps induce isomorhpisms
P AL(X:) =ZA(X) and P A, (A;) = A, (A). This was done in Exercise Sheet
1, Question 1, yielding the result.




5-lemma: With an abuse of notation, we will call all horizontal maps 0.
Let 0 # ¢ € C be a group element. We will show that (c) # 0. Let d(c) € D.
If O(c) # 0, so u(d(c)) # 0. However, by commutativity of the diagrams, we
haved(t(c)) # 0, and so t(c) # 0. So suppose d(c) = 0. By exactness, there is
0 # b € B such that 9(b) = ¢. Consider s(b). If d(s(b)) # 0, then we are done
by commutativity. Otherwise, there is @’ such that d(a’) = s(b). Since r is
surjective and s is an isomorphism, there exists a € A such that d(r(a)) = s(b),
and so d(a) = b. However, this implies ¢ = dda = 0, which is a contradiction.

The argument to show that t is surjective is analogous.

Part 2: Let A = |JA;. By the additivity axiom, the inclusions induce
isomorphisms@ H(X;) — H(X) and @ H(A;)) - H(JA. The long exact
sequence of the pair yields:

D H(A) — QH(X) — D H(X;, Ai) — B H(A) — D H(X])

N

HA) — H(X) — H(X,A) ——— H(A) ——— H(X)

The result now follows from 5-lemma.

Question 2:
Consider a CW-complex K, possibly not of finite dimension. For the singular ho-
mology, show that the inclusion i of K™ in K induces isomorphisms i, : H,(K®™) —

H,(K) for all p < n.
Hints:

1. You can use the following fact: for m > n+1 the following is an isomorphism:
H, (K™ 2 g (K0).
2. Use fact (1) to show that the following is an isomorphism:

H, (K™Y 25 H (K).



Solution:

We to indicate the inclusion from the n to m skeleton we use %, ,,, with the
convention K(®) = K. We start by showing that (i, 1.0)%: H,(K") —
H,(K). is surjective. Let ¢ = > n,o be a singular chain of K. We know
that there exists N such that every singular simplex o of ¢ has image in K™,
Let [c]o denote the class of ¢ in H,(K) and [¢]y the class of ¢ in H, (K™).
Observe that this is well defined. If ¢ is a homology class of K, it means that
dc = 0, which is still true in the chain complex of KV) since the image of Oc
is contained in the image of ¢. Let i, 11y be the inclusion K1) — K() By
fact one, it induces an isomorphism at the level of homology. Thus, there is
¢ such that (in+1.n5)([¢']ns1) = [c]n- Note that the composition iy © int1.n
coincides with the inclusion i, 11 4: K™ — K. In particular

(int1.00)+([¢Tnt1) = [clloe-

To show injectivity, let ¢/ be singular chain of K™+ such that d¢’ = 0, and
assume that i,([¢'],+1) = 0 in H,(K). Then there exists a singular chain ¢ of
K such that dc = (ip41,00)+¢. Reasoning as before, we need to have that c is
contained in K™, for some N. We use this fact to show that Oc = ¢, yielding
the result.

To conclude the exercise, consider the following commutative diagram,
where 3 out of 4 maps are isomorphisms.

H

p

(K @+h) AR Hp(K(”))

lip+1,oo lin,oo

p(K) # Hp(K)

Question 3:

Let A, B, C be abelian groups, and consider the following short exact sequence:

0—>Ai>Bi>C—>O.

1. Suppose that there is a splitting p: C' — B, i.e. a map such that jop: C' —
C =1Id¢. Show that B= A C.

2. Suppose that there is a splitting p: B — A, i.e. a map such that poi: A —
A =1d4. Show that B= A¢ C.



Solution:
Let r=poj: B— B. Let b € B and write

b= (b—r())+r().

Observe that r(b) € p(C) and b—r(b) € ker(r). This gives us an injective map
f: B — p(C) @ ker(r). Indeed, suppose there are b, b such that r(b) = (V)
and b —7r(b) = —r(t'). Then b=1"V".

By the property of p, we have that p is injective, and thus Im(p) = C' and
ker(r) = ker(j). By exactness i is injective and thus ker(r) = ker(j) = Im(i) =
A. This gives us an injective map f: B — A@ C. We need to show that the
map is surjective. Let a € a and ¢ € C and consider b = i(a) + p(c). Then
r(i(a) + p(c)) = p(c) and leading that f(i(a) + p(c)) = a + c.

The other case is completely analogous, just consider s = j o p instead of
r, and exchange the roles of A and C'.

Alternatively, after constructing in a similar way a map from B to A@ C,
one can consider the following diagram:

0 s A > B s C

I ll

0 > A » AP C > C

and observing that the two rows are exact, all vertical maps but the central are
isomorphisms, and the diagram commutes. Then the result follows from the
5-lemma. (Note, this is probably more work than how it is written above).




	
	
	

