Prof. Dr. Alessandro Sisto Assistant: Davide Spriano

Some notes on definitions:

- 1. With the notation $X \sqcup Y$, we mean the topological space where the sets X, Y are clopen, and the inclusions $X \to X \sqcup Y, Y \to X \sqcup Y$ are homeomorphisms on their images.
- 2. Given pointed spaces (X_i, p_i) , we denote $\forall X_i = \bigsqcup X_i / p_i \sim p_j$.
- 3. Given a topological space X and a subset $A \subseteq X$, we define $X/A = X \sqcup \{*\}/y \sim x \forall x, y \in A \cup \{*\}.$

Question 1:

Compute $\tilde{H}(\vee_{i \in I} S_i^n)$, where S^n is the *n*-dimensional sphere.

Question 2:

Let $f_{\sigma} \colon D_{\sigma}^{n} \to K^{(n)}$ be the attaching map of an *n*-cell, let $S_{\sigma}^{n} = K^{(n)}/K^{(n)} - f_{\sigma}(\mathring{D}_{\sigma}^{n})$, and let $p_{\sigma} \colon K^{(n)} \to S_{\sigma}^{n}$ be the quotient map.

- 1. Show that $(p_{\sigma} \circ f_{\sigma})_* \colon H_*(D_{\sigma}^n, \partial D_{\sigma}^n) \to H_*(S_{\sigma}^n, \{*\})$ is an isomorphism.
- 2. Show that for $\tau \neq \sigma$, the map $(p_{\sigma} \circ f_{\tau})_*$ is the zero map.

Question 3:

Let X be a topological space. Show that there is an isomorphism $\tilde{H}_*(X) \to H_*(X, \{*\})$ which factors through the inclusion $X \to (X, \{*\})$.