Algebraic Topology

Prof. Dr. Alessandro Sisto Assistant: Davide Spriano

Question 1:

Consider the cycle *a* given by the inclusion $\partial \Delta^2 \to \Delta^2$, and let *b* be its barycentric subdivision. Show explicitly that *a* and *b* differ by a relative boundary, i.e. write an element $c \in \Delta_2(\Delta^2)$ such that $\partial c - (a - b) \in \Delta_2(\partial \Delta^2)$. You can present a solution by pictures.

Solution:

Due to a typo, the exercise was much easier than planned. The intended statement is that a is the identity $\Delta^2 \to \Delta^2$ (and $c \in \Delta_3(\Delta^2)$). As it is written, we already have $(a - b) \in \Delta_1(\partial \Delta^2)$. However, the exercise is still interesting if we want c such that $\partial c - (a - b) = 0$, and not just in $\Delta_1(\partial \Delta^2)$.

The solution to the intended exercise and of the simpler version are attached in the other file.

Question 2:

Let X be a topological space and Y be a subspace of X. Let $i: Y \to X$ be the inclusion. Let C be space obtained from X by "attaching a cone on Y". More precisely, is the topological space

$$C = (Y \times [0,1]) \sqcup X / \sim$$

where \sim is defined as $(y,0) \sim i(y)$ and $(y,1) \sim (y',1)$ for all $y, y' \in Y$. Compute $H_*(C)$.

Solution:

To solve this exercise, we will use excision. Let Z be the image of $Y \times [0, 1]$ in C and let p be the point corresponding to $Y \times \{1\}$. It is standard point set topology to show that (C, Z) is homotopic equivalent to $(C, \{p\})$. Similarly, $(C - \{p\}, Z - \{p\})$ is homotopic equivalent to (X, Y). Using excision on a

neighbourhood of p contained in the interior of Z, we obtain that $(C, \{p\})$ has the same homology of (X, Y). Thus $\tilde{H}_*(C) = H_*(X, Y)$.

Concluding the exercise here is ok. To compute $H_*(C)$, we only need to compute $H_0(C)$. This is much harder to do explicitly. We have a long exact sequence:

$$\cdots \to H_0(X) \to H_0(C) \to H_0(C, X) \to 0.$$

Using excision and homotopy equivalence again, we obtain that $H_0(C, X) \cong H_0(Z, Y)$, which will allow, once we have explicit values, to compute $H_0(C)$.

Question 3:

Show that homotopy equivalence of chain complexes is an equivalence relation.

Solution:

Recall that A_{\bullet} is chain homotopic to B_{\bullet} if there are chain maps $f: A_{\bullet} \to B_{\bullet}$ and $g: B_{\bullet} \to A_{\bullet}$ and a collection of maps $h_n: A_n \to A_{n+1}, k_n: B_n \to B_{n+1}$ such that

$$\mathrm{Id}_B - f \circ g = \partial k + k\partial$$

and

$$\mathrm{Id}_A - g \circ f = \partial h + h \partial.$$

It is clear that being chain homotopic is a symmetric relation. To see that it is reflexive, take $f = g = \text{Id}_A$ and h = k = 0.

We will now show that it is transitive.

Let f, g, h, k be the chain maps and maps associated to a chain homotopy equivalence between A_{\bullet} and B_{\bullet} and f', g', h', k' be the ones associated to a chain homotopy equivalence between B_{\bullet} and C_{\bullet} .

Let

- $F: A_{\bullet} \to C_{\bullet}$ be defined as $f' \circ f$,
- $G: C_{\bullet} \to A_{\bullet}$ be defined as $g \circ g'$,
- and $H: A_{\bullet} \to A_{\bullet+1}$ be defined as $h + g \circ h' \circ f$.

We claim that

$$\mathrm{Id}_A - G \circ F = \partial H + H \partial A$$

Recall that g, f, g', f' are chain maps, hence it hold $\partial g = g\partial$. This is not true for h, k, h', k'. Let $a \in A_{\bullet}$. Then we have:

$$\begin{aligned} a - G \circ F(a) &= a - g \circ g' \circ f' \circ f(a) = \\ &= a - g \left[g' \circ f'(f(a)) \right] = \\ &= a - g \left[f(a) - \partial h'(f(a)) - h' \partial(f(a)) \right] = \\ &= a - g \circ f(a) + \partial g \circ h' \circ f(a) + g \circ h' \circ f \partial(a) = \\ &= a - (a - \partial h(a) - h \partial(a)) + \partial g \circ h' \circ f(a) + g \circ h' \circ f \partial(a) = \\ &= \partial (h + g \circ h' \circ f)(a) + (h + g \circ h' \circ f)(\partial a) = \\ &= \partial H(a) + H \partial(a) \end{aligned}$$

The argument for the other direction is completely analogous.