Algebraic Topology

Prof. Dr. Alessandro Sisto Assistant: Davide Spriano

Question 1:

- 1. State the Hurewicz Theorem about the connection between homology and fundamental group.
- 2. The proof of Hurewicz Theorem uses a certain map $\Psi \colon \Delta_1(X) \to \pi_1^{ab}(X)$. Define the map.
- 3. Show that $\Psi(B_1(X)) = 0$.

Question 2:

- 1. State the excision Theorem for singular homology.
- 2. Define the map $\Upsilon \colon L_p(\Delta^q) \to L_p(\Delta^q)$, where $L_p(\Delta^q)$ denotes the affine singular simplices of Δ^q .
- 3. Proove that Υ is a chain map.

Question 3:

Let Σ_2 be the CW-complex with one 0-cell labelled v, four 1-cells labelled a, b, c, dand one 2-cell labelled σ with attaching map as in the following picture.

- 1. Compute the singular homology groups $H_*(\Sigma_2)$ of Σ_2 .
- 2. Let X be a finite CW-complex such that $X^{(2)}$ is homeomorphic to Σ_2 . What can you say about $H_1(X)$?
- 3. What can you say about $H_2(X)$?

Question 4:

For each integer $n \ge 1$, let C_n be the circle of radius $\frac{1}{n}$ centered in $(\frac{1}{n}, 0)$. For clarity, $C_n = \left\{ (x, y) \mid (x - \frac{1}{n})^2 + y^2 = \frac{1}{n^2} \right\}$. Let $X = \bigcup_{n=1}^{\infty} C_n \subseteq \mathbb{R}^2$ be endowed with the subspace topology.

- 1. Show that the singular homology group $H_1(X)$ is not finitely generated. Possible hint: using suitable maps to the various circles may help
- 2. For each n > 0, let $i_n \colon C_n \to X$ be the inclusion. Show that the homorphism

 $\bigoplus (i_n)_* \colon \bigoplus H_1(C_n) \to H_1(X)$

is not surjective. That is to say that $H_1(X)$ is not generated by the images of the first homology groups of the circles C_n .