Introduction to Algebraic Number Theory

Lecturer: Prof. Dr. Özlem Imamoglu
Coordinator: Dr. Danylo Radchenko

Exercise Sheet 11

Exercise 11.1. Let $K=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Recall from the lectures that $\mathcal{O}_{K}=\mathbb{Z}[\gamma]$, where $\gamma=\frac{\sqrt{2}+\sqrt{6}}{2}$. Show that no prime is inert in K, i.e., that (p) is not a prime ideal of \mathcal{O}_{K} for any prime p.
(Hint: Use the fact that for any p one of 2, 3, or 6 is a quadratic residue $\bmod p$.)

Exercise 11.2. Let $K=\mathbb{Q}(\alpha)$, where α is a root of $p(x)=x^{3}-10 x^{2}+19 x-2$.
(a) Show that $D_{K}=43^{2}$;
(b) Check that $\alpha_{2}=\frac{-\alpha^{2}+7 \alpha+4}{2}$ and $\alpha_{3}=\frac{\alpha^{2}-9 \alpha+16}{2}$ are roots of $p(x)$, and show that K is a Galois extension;
(c) Show that (2) $=\mathfrak{p}_{1} \mathfrak{p}_{2} \mathfrak{p}_{3}$ for distinct prime ideals \mathfrak{p}_{i};
(d) Conclude that \mathcal{O}_{K} is not monogenic, i.e., $\mathcal{O}_{K} \neq \mathbb{Z}[\theta]$ for any $\theta \in K$.

Exercise 11.3. Let $K=\mathbb{Q}(\sqrt{-D})$, where $D \in\{1,2,3,7,11,19,43,67,163\}$. Show that the class number of K is equal to 1 .
(Hint: Cases $D=1,2,3,11,19$ where previously considered in Ex. 1.1, Ex. 1.2, Ex. 8.1b. In remaining cases compute the Minkowski bound and factorize small primes into prime ideals.)

Exercise 11.4. Let $K=\mathbb{Q}(\alpha)$, where α is an algebraic integer with minimal polynomial $q(x)=x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0}$. Show that if $q(x)$ is Eisenstein at prime p (i.e., $p \| a_{0}$ and $\left.p \mid a_{j}, j=1, \ldots, n-1\right)$, then $p \nmid\left[\mathcal{O}_{K}: \mathbb{Z}[\alpha]\right]$.

