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Solutions to Exercise Sheet 12

Exercise 12.1. Show that the ring of integers of K = Q(ζ23) is not a PID.

(a) Show that K contains a subfield F isomorphic to Q(
√
−23);

(b) Show that 47 splits completely in OK ;

(c) Assume that some prime ideal above 47 is of the form (x) for x ∈ OK . Show that
y = NK/F (x) ∈ OF has norm 47, and obtain a contradiction.

(Hint: in part (a) use Gauss sums.)

Solution. (a) From Exercise 2.4 (b) we know that the Gauss sum τ(1) ∈ Z[ζ23] satisfies
τ(1)2 = −23. Therefore, Q(τ(1)) is the subfield Q(

√
−23) ⊂ Q(ζ23).

(b) We need to factorize Φ23(x) = x22 + · · · + x + 1 = x23−1
x−1 in (Z/47Z)[x]. Since

47 ≡ 1 (mod 23), and since the multiplicative group of the finite field Z/47Z is cyclic,
there exists λ ∈ Z/47Z such that λ23 ≡ 1 (mod 47) but λ 6≡ 1 (mod 47). But then

Φ23(x) ≡ (x− λ) . . . (x− λ22) (mod 47) .

This shows that 47 splits completely in Z[ζ23].
(c) Since NF/Q◦NK/F = NK/Q, we have NF/Q(y) = NK/Q(x) = 47 by part (b). Let y =

a+b1+
√
−23
2

, where a, b ∈ Z. Then NF/Q(y) = a2+ab+6b2. From 23
4
b2 ≤ a2+ab+6b2 = 47

we see that |b| ≤ 2.
Without loss of generality we may assume that b ∈ {0, 1, 2}. If b = 2, then a2+2a = 23,

so that (a + 1)2 = 24, if b = 1 then (2a + 1)2 = 165, and if b = 0, then a2 = 47. Since
none of 24, 47 or 165 is a square, there are no integral solutions to a2 + ab + 6b2 = 47.
This contradiction shows that no prime ideal above 47 is principal, and hence Z[ζ23] is
not a PID.

Exercise 12.2. Let p be an odd prime and let K = Q(ζp) ⊂ C, where ζp = e2πi/p is a
primitive p-th root of unity. Show that any unit u ∈ O×K can be written as u = rζnp for
some r ∈ R ∩ O×K and n ∈ {0, . . . , p− 1}.

Solution. Denote by the complex conjugation. Note that for any automorphism
σ ∈ Gal(K/Q) we have uσ = uσ. Therefore, the algebraic number x = u/u satisfies
|xσ| = 1 for all σ ∈ Gal(K/Q). Since u and u are units, x is an algebraic integer, and
by Kronecker’s lemma, since all conjugates of x are on the unit circle, x has to be a
root of unity. By Exercise 10.2(a) we know that the only roots of unity in K are ±ζkp ,
k = 0, . . . , p− 1.
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Therefore, u = ±ζkpu. If we write u =
∑p−1

j=0 aiζ
j
p , where ai ∈ Z, then u =

∑p−1
j=0 aiζ

−j
p .

Since (1 − ζp) divides ζap − ζbp for all a, b (see Exercise 10.2(b)), we have that u − u is
divisible by (1− ζp). On the other hand,

u− u = u(1∓ ζkp ) ≡ u(1∓ 1) (mod 1− ζp) ,

and since the norm of 1− ζp is p > 2, we see that the sign in u = ±ζkpu has to be “+”.
If k is odd, then we can write ζkp = ζk+pp . Thus, in all cases we can write ζkp = ζ2np for

some n ∈ Z. But then u/ζnp = u/ζnp , so that u = rζnp , where r ∈ R. Since u and ζnp are
units, so is r, so that r ∈ O×K ∩ R.

Exercise 12.3. We call a prime p regular if p does not divide the class number of Q(ζp).
Show that if p ≥ 5 is regular and xp + yp + zp = 0 for some x, y, z ∈ Z, then p|xyz as
follows:

Assume that x, y, and z are relatively prime and p - xyz.

(a) Show that the ideals (x+ ζjpy) are relatively prime for j = 0, . . . , p− 1;

(b) Show that x+ζpy = rζnp α
p for some α ∈ Z[ζp], r ∈ Z[ζp]

×∩R and n ∈ {0, . . . , p−1};

(c) Show that αp ≡ a (mod p) for some integer a;

(d) Using parts (b) and (c) show that

γ = ζnp x+ ζn−1p y − ζ−np x− ζ−n+1
p y ≡ 0 (mod p)

(e) Obtain contradiction using part (d).

Solution.
We write ζ instead of ζp.
(a) Assume that some prime ideal p divides both (x + ζ iy) and (x + ζjy) for some

0 ≤ i < j ≤ p− 1. Then p must contain

ζ−j((x+ ζjy)− (x+ ζ iy)) = (1− ζ i−j)y

and
(x+ ζ iy)− ζ i−j(x+ ζjy) = (1− ζ i−j)x .

Since x and y are coprime integers, there exist a, b ∈ Z such that ax+by = 1. Therefore, p
contains 1 − ζ i−j. Since (1 − ζ i−j) is a prime ideal (it has norm p), we must have
p = (1 − ζ i−j) = (1 − ζ) (recall Exercise 10.2(b)). From this we conclude that (1 − ζ)
divides zp. But the norm of (1− ζ) is p, thus taking the norms we get p|zp2 , so that p|z,
a contradiction.

(b) Using the factorization of xp + yp in Q(ζ) we obtain a factorization of ideals

(z)p =

p−1∏
j=0

(x+ ζjy) .

By part (a) ideals (x + ζjy) are pairwise coprime, and hence from unique factorization
into prime ideals we see that (x + ζy) = ap for some ideal a. If a where not principal,
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then, since ap is principal, its order in the ideal class group would divide p. However, by
our assumption p does not divide the order of the class group, thus a is principal.

Thus x+ ζy = uαp for some α ∈ Z[ζ] and a unit u. Combined with Exercise 12.2 this
gives us x+ ζy = rζnαp as needed.

(c) Since (
∑

i xi)
p ≡

∑
i x

p
i (mod p) we have αp = (

∑
i aiζ

i)p ≡
∑

i a
p
i (mod p). Thus

we can take a =
∑

i a
p
i ∈ Z.

(d) From (b) and (c) we have

ζ−n(x+ ζy) ≡ ra (mod p) .

Since r and a are real, by taking conjugates we also have

ζn(x+ ζ−1y) ≡ ra (mod p) .

Taking the difference of these two congruences we get

γ = ζnx+ ζn−1y − ζ−nx− ζ−n+1y ≡ 0 (mod p) .

(e) Assume that p - xyz. By part (d) we have γ = βp for some β ∈ Z[ζ]. Note that if
I ⊂ {0, . . . , p− 1} is any subset of size p− 1, then ζ i, i ∈ I form a Z-basis for Z[ζ]. Since
p ≥ 5 we can pick such a set I that contains the residues J = {n, n− 1,−n,−n+ 1}
modulo p. From this we conclude that if we write γ with respect to exponents in J , all
coefficients should be divisible by p.

Note that n, n−1,−n,−n+1 are all distinct modulo p unless n ≡ 0, 1, or p+1
2

mod p.
In this case we must have p|x, y, contradicting our assumption p - xyz.

Assume that n ≡ 0 (mod p). Then γ = yζp−1 − yζ and hence p|y, a contradiction.
Similarly, if n ≡ 1 (mod p), then γ = xζ − xζp−1 and hence p|x, a contradiction.
Finally, if 2n ≡ 1 (mod p), then γ = ζn(x− y) + ζn−1(y − x), from which we see that

x ≡ y (mod p). Since the original equation xp + yp + zp is symmetric in x, y, z, repeating
this argument we get y ≡ z (mod p), and thus 3xp ≡ 0 (mod p). But since p ≥ 5, this
can only happen if p|x, again contradicting our assumption.

Thus in each case we obtained a contradiction, and hence we must have p|xyz.
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