Autumn Semester 2019

Introduction to Algebraic Number Theory
Lecturer: Prof. Dr. Ozlem Imamoglu
Coordinator: Dr. Danylo Radchenko

Solutions to Exercise Sheet 12

Exercise 12.1. Show that the ring of integers of K = Q((s3) is not a PID.
(a) Show that K contains a subfield F' isomorphic to Q(v/—23);
(b) Show that 47 splits completely in Of;

(c) Assume that some prime ideal above 47 is of the form (z) for x € Of. Show that
y = Ng/r(z) € Op has norm 47, and obtain a contradiction.

(Hint: in part (a) use Gauss sums.)

Solution. (a) From Exercise 2.4 (b) we know that the Gauss sum 7(1) € Z[(23] satisfies
7(1)? = —23. Therefore, Q(7(1)) is the subfield Q(v/—23) C Q§C23)'

(b) We need to factorize ®o3(z) = 2?2 + -+ x4+ 1 = mi:ll in (Z/4A7Z)[x]. Since
47 = 1 (mod 23), and since the multiplicative group of the finite field Z/477Z is cyclic,

there exists A € Z/477Z such that A*® = 1 (mod 47) but A # 1 (mod 47). But then

Bos(z) = (. — ) ... (x — A*?) (mod 47).

This shows that 47 splits completely in Z[(a3).

(c) Since NpjgoNk/r = Nk /g, we have Np/g(y) = Nk /g(x) = 47 by part (b). Let y =
a—i—b@, where a,b € Z. Then Npg(y) = a*+ab+6b*. From 2b* < a®+ab+6b* = 47
we see that |b| < 2.

Without loss of generality we may assume that b € {0, 1,2}. If b = 2, then a*+2a = 23,
so that (a4 1)? = 24, if b = 1 then (2a + 1)* = 165, and if b = 0, then a® = 47. Since
none of 24, 47 or 165 is a square, there are no integral solutions to a? 4 ab + 6b*> = 47.

This contradiction shows that no prime ideal above 47 is principal, and hence Z[(s3] is
not a PID.

Exercise 12.2. Let p be an odd prime and let K = Q((,) C C, where (, = €™/ is a
primitive p-th root of unity. Show that any unit u € Of can be written as u = r(;' for
some r € RNOg and n € {0,...,p—1}.

Solution. Denote by — the complex conjugation. Note that for any automorphism
o € Gal(K/Q) we have u® = u?. Therefore, the algebraic number x = u/u satisfies
|z7| = 1 for all o € Gal(K/Q). Since u and @ are units, = is an algebraic integer, and
by Kronecker’s lemma, since all conjugates of x are on the unit circle, z has to be a
root of unity. By Exercise 10.2(a) we know that the only roots of unity in K are :|:C]’f ,
k=0,...,p—1.



Therefore, u = £¢)u. If we write u = Z?;é a;¢), where a; € Z, then u = Z?;é aiC, 7.
Since (1 — () divides ¢ — ¢! for all a,b (see Exercise 10.2(b)), we have that u — @ is
divisible by (1 — ¢,). On the other hand,

w—w=T(1F¢) =u(1F1) (mod 1-G),

and since the norm of 1 — ¢, is p > 2, we see that the sign in v = j:g“ﬂ has to be “+7.
If k£ is odd, then we can write Q’: = C]’:“’. Thus, in all cases we can write (}’f = (5” for

some n € Z. But then u/{" = u/(}, so that u = r(], where r € R. Since u and (] are
units, so is 7, so that r € OF NR.

Exercise 12.3. We call a prime p regular if p does not divide the class number of Q((,).
Show that if p > 5 is regular and z? + y? + 2P = 0 for some z,y,z € Z, then p|ryz as
follows:

Assume that x, y, and z are relatively prime and p { xyz.

a) Show that the ideals (x + (Jy) are relatively prime for j =0,...,p — 1;

(a)
(b) Show that z+(,y = r(Ja? for some a € Z[(,], v € Z[(,]*NR and n € {0,...,p—1};
(c¢) Show that a? = a (mod p) for some integer a;

)

(d) Using parts (b) and (c) show that
y=Cr+ ¢y —¢ e — ¢ "y =0 (mod p)
(e) Obtain contradiction using part (d).

Solution.

We write ¢ instead of ¢,.

(a) Assume that some prime ideal p divides both (z + ('y) and (z + (’y) for some
0<i<j<p-—1. Then p must contain

@+ Py)— (@+Cy) =1 -y

and
(x+¢y) =@+ y) =1 =)z
Since = and y are coprime integers, there exist a,b € Z such that ar+by = 1. Therefore, p
contains 1 — (7. Since (1 — (") is a prime ideal (it has norm p), we must have
p=(1-C"7) = (1-) (recall Exercise 10.2(b)). From this we conclude that (1 — ()
divides 2zP. But the norm of (1 — () is p, thus taking the norms we get p|zp2, so that p|z,
a contradiction.
(b) Using the factorization of z” + y? in Q(¢) we obtain a factorization of ideals

p—1

(2 = [+ ).

J=0

By part (a) ideals (z + (7y) are pairwise coprime, and hence from unique factorization
into prime ideals we see that (z + (y) = a” for some ideal a. If a where not principal,
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then, since a” is principal, its order in the ideal class group would divide p. However, by
our assumption p does not divide the order of the class group, thus a is principal.

Thus x + (y = ua? for some « € Z[(] and a unit u. Combined with Exercise 12.2 this
gives us  + (y = r("a® as needed.

(¢) Since (3, ;)P = Y, 2¥ (mod p) we have o = (>, a;¢")P = >, a¥ (mod p). Thus
we can take a =), al € Z.

(d) From (b) and (c) we have

(T"(x + Cy) =ra (mod p).

Since r and a are real, by taking conjugates we also have
("(z + ¢ ty) =ra (mod p) .
Taking the difference of these two congruences we get
Y= ¢y — (M — Ty =0 (mod p).

(e) Assume that p { zyz. By part (d) we have v = Sp for some 5 € Z|[(]. Note that if
I C{0,...,p—1} is any subset of size p— 1, then ¢*, i € I form a Z-basis for Z[(]. Since
p > 5 we can pick such a set I that contains the residues J = {m,n —1,—n,—n + 1}
modulo p. From this we conclude that if we write v with respect to exponents in J, all
coefficients should be divisible by p.

Note that n,n—1, —n, —n +1 are all distinct modulo p unless n =0, 1, or ’%1 mod p.
In this case we must have p|z,y, contradicting our assumption p { zyz.

Assume that n =0 (mod p). Then v = y(?~! — y¢ and hence ply, a contradiction.

Similarly, if n = 1 (mod p), then v = 2{ — 2¢?~! and hence p|z, a contradiction.

Finally, if 2n = 1 (mod p), then v = ("(z — y) + (" '(y — z), from which we see that
x =y (mod p). Since the original equation z? + y? + 2P is symmetric in x,y, z, repeating
this argument we get y = 2z (mod p), and thus 3zP = 0 (mod p). But since p > 5, this
can only happen if p|z, again contradicting our assumption.

Thus in each case we obtained a contradiction, and hence we must have p|zyz.



