Introduction to Algebraic Number Theory

Lecturer: Prof. Dr. Özlem Imamoglu
Coordinator: Dr. Danylo Radchenko

Solutions to Exercise Sheet 12

Exercise 12.1. Show that the ring of integers of $K=\mathbb{Q}\left(\zeta_{23}\right)$ is not a PID.
(a) Show that K contains a subfield F isomorphic to $\mathbb{Q}(\sqrt{-23})$;
(b) Show that 47 splits completely in \mathcal{O}_{K};
(c) Assume that some prime ideal above 47 is of the form (x) for $x \in \mathcal{O}_{K}$. Show that $y=N_{K / F}(x) \in \mathcal{O}_{F}$ has norm 47, and obtain a contradiction.
(Hint: in part (a) use Gauss sums.)
Solution. (a) From Exercise 2.4 (b) we know that the Gauss sum $\tau(1) \in \mathbb{Z}\left[\zeta_{23}\right]$ satisfies $\tau(1)^{2}=-23$. Therefore, $\mathbb{Q}(\tau(1))$ is the subfield $\mathbb{Q}(\sqrt{-23}) \subset \mathbb{Q}\left(\zeta_{23}\right)$.
(b) We need to factorize $\Phi_{23}(x)=x^{22}+\cdots+x+1=\frac{x^{23}-1}{x-1}$ in $(\mathbb{Z} / 47 \mathbb{Z})[x]$. Since $47 \equiv 1(\bmod 23)$, and since the multiplicative group of the finite field $\mathbb{Z} / 47 \mathbb{Z}$ is cyclic, there exists $\lambda \in \mathbb{Z} / 47 \mathbb{Z}$ such that $\lambda^{23} \equiv 1(\bmod 47)$ but $\lambda \not \equiv 1(\bmod 47)$. But then

$$
\Phi_{23}(x) \equiv(x-\lambda) \ldots\left(x-\lambda^{22}\right)(\bmod 47) .
$$

This shows that 47 splits completely in $\mathbb{Z}\left[\zeta_{23}\right]$.
(c) Since $N_{F / \mathbb{Q}} \circ N_{K / F}=N_{K / \mathbb{Q}}$, we have $N_{F / \mathbb{Q}}(y)=N_{K / \mathbb{Q}}(x)=47$ by part (b). Let $y=$ $a+b \frac{1+\sqrt{-23}}{2}$, where $a, b \in \mathbb{Z}$. Then $N_{F / \mathbb{Q}}(y)=a^{2}+a b+6 b^{2}$. From $\frac{23}{4} b^{2} \leq a^{2}+a b+6 b^{2}=47$ we see that $|b| \leq 2$.

Without loss of generality we may assume that $b \in\{0,1,2\}$. If $b=2$, then $a^{2}+2 a=23$, so that $(a+1)^{2}=24$, if $b=1$ then $(2 a+1)^{2}=165$, and if $b=0$, then $a^{2}=47$. Since none of 24,47 or 165 is a square, there are no integral solutions to $a^{2}+a b+6 b^{2}=47$. This contradiction shows that no prime ideal above 47 is principal, and hence $\mathbb{Z}\left[\zeta_{23}\right]$ is not a PID.

Exercise 12.2. Let p be an odd prime and let $K=\mathbb{Q}\left(\zeta_{p}\right) \subset \mathbb{C}$, where $\zeta_{p}=e^{2 \pi i / p}$ is a primitive p-th root of unity. Show that any unit $u \in \mathcal{O}_{K}^{\times}$can be written as $u=r \zeta_{p}^{n}$ for some $r \in \mathbb{R} \cap \mathcal{O}_{K}^{\times}$and $n \in\{0, \ldots, p-1\}$.
Solution. Denote by - the complex conjugation. Note that for any automorphism $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ we have $\overline{u^{\sigma}}=\bar{u}^{\sigma}$. Therefore, the algebraic number $x=u / \bar{u}$ satisfies $\left|x^{\sigma}\right|=1$ for all $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$. Since u and \bar{u} are units, x is an algebraic integer, and by Kronecker's lemma, since all conjugates of x are on the unit circle, x has to be a root of unity. By Exercise 10.2(a) we know that the only roots of unity in K are $\pm \zeta_{p}^{k}$, $k=0, \ldots, p-1$.

Therefore, $u= \pm \zeta_{p}^{k} \bar{u}$. If we write $u=\sum_{j=0}^{p-1} a_{i} \zeta_{p}^{j}$, where $a_{i} \in \mathbb{Z}$, then $\bar{u}=\sum_{j=0}^{p-1} a_{i} \zeta_{p}^{-j}$. Since $\left(1-\zeta_{p}\right)$ divides $\zeta_{p}^{a}-\zeta_{p}^{b}$ for all a, b (see Exercise 10.2(b)), we have that $u-\bar{u}$ is divisible by $\left(1-\zeta_{p}\right)$. On the other hand,

$$
u-\bar{u}=\bar{u}\left(1 \mp \zeta_{p}^{k}\right) \equiv \bar{u}(1 \mp 1)\left(\bmod 1-\zeta_{p}\right),
$$

and since the norm of $1-\zeta_{p}$ is $p>2$, we see that the sign in $u= \pm \zeta_{p}^{k} \bar{u}$ has to be "+".
If k is odd, then we can write $\zeta_{p}^{k}=\zeta_{p}^{k+p}$. Thus, in all cases we can write $\zeta_{p}^{k}=\zeta_{p}^{2 n}$ for some $n \in \mathbb{Z}$. But then $\overline{u / \zeta_{p}^{n}}=u / \zeta_{p}^{n}$, so that $u=r \zeta_{p}^{n}$, where $r \in \mathbb{R}$. Since u and ζ_{p}^{n} are units, so is r, so that $r \in \mathcal{O}_{K}^{\times} \cap \mathbb{R}$.

Exercise 12.3. We call a prime p regular if p does not divide the class number of $\mathbb{Q}\left(\zeta_{p}\right)$. Show that if $p \geq 5$ is regular and $x^{p}+y^{p}+z^{p}=0$ for some $x, y, z \in \mathbb{Z}$, then $p \mid x y z$ as follows:

Assume that x, y, and z are relatively prime and $p \nmid x y z$.
(a) Show that the ideals $\left(x+\zeta_{p}^{j} y\right)$ are relatively prime for $j=0, \ldots, p-1$;
(b) Show that $x+\zeta_{p} y=r \zeta_{p}^{n} \alpha^{p}$ for some $\alpha \in \mathbb{Z}\left[\zeta_{p}\right], r \in \mathbb{Z}\left[\zeta_{p}\right]^{\times} \cap \mathbb{R}$ and $n \in\{0, \ldots, p-1\}$;
(c) Show that $\alpha^{p} \equiv a(\bmod p)$ for some integer a;
(d) Using parts (b) and (c) show that

$$
\gamma=\zeta_{p}^{n} x+\zeta_{p}^{n-1} y-\zeta_{p}^{-n} x-\zeta_{p}^{-n+1} y \equiv 0(\bmod p)
$$

(e) Obtain contradiction using part (d).

Solution.

We write ζ instead of ζ_{p}.
(a) Assume that some prime ideal \mathfrak{p} divides both $\left(x+\zeta^{i} y\right)$ and $\left(x+\zeta^{j} y\right)$ for some $0 \leq i<j \leq p-1$. Then \mathfrak{p} must contain

$$
\zeta^{-j}\left(\left(x+\zeta^{j} y\right)-\left(x+\zeta^{i} y\right)\right)=\left(1-\zeta^{i-j}\right) y
$$

and

$$
\left(x+\zeta^{i} y\right)-\zeta^{i-j}\left(x+\zeta^{j} y\right)=\left(1-\zeta^{i-j}\right) x
$$

Since x and y are coprime integers, there exist $a, b \in \mathbb{Z}$ such that $a x+b y=1$. Therefore, \mathfrak{p} contains $1-\zeta^{i-j}$. Since $\left(1-\zeta^{i-j}\right)$ is a prime ideal (it has norm p), we must have $\mathfrak{p}=\left(1-\zeta^{i-j}\right)=(1-\zeta)$ (recall Exercise $\left.10.2(\mathrm{~b})\right)$. From this we conclude that $(1-\zeta)$ divides z^{p}. But the norm of $(1-\zeta)$ is p, thus taking the norms we get $p \mid z^{p^{2}}$, so that $p \mid z$, a contradiction.
(b) Using the factorization of $x^{p}+y^{p}$ in $\mathbb{Q}(\zeta)$ we obtain a factorization of ideals

$$
(z)^{p}=\prod_{j=0}^{p-1}\left(x+\zeta^{j} y\right)
$$

By part (a) ideals $\left(x+\zeta^{j} y\right)$ are pairwise coprime, and hence from unique factorization into prime ideals we see that $(x+\zeta y)=\mathfrak{a}^{p}$ for some ideal \mathfrak{a}. If \mathfrak{a} where not principal,
then, since \mathfrak{a}^{p} is principal, its order in the ideal class group would divide p. However, by our assumption p does not divide the order of the class group, thus \mathfrak{a} is principal.

Thus $x+\zeta y=u \alpha^{p}$ for some $\alpha \in \mathbb{Z}[\zeta]$ and a unit u. Combined with Exercise 12.2 this gives us $x+\zeta y=r \zeta^{n} \alpha^{p}$ as needed.
(c) Since $\left(\sum_{i} x_{i}\right)^{p} \equiv \sum_{i} x_{i}^{p}(\bmod p)$ we have $\alpha^{p}=\left(\sum_{i} a_{i} \zeta^{i}\right)^{p} \equiv \sum_{i} a_{i}^{p}(\bmod p)$. Thus we can take $a=\sum_{i} a_{i}^{p} \in \mathbb{Z}$.
(d) From (b) and (c) we have

$$
\zeta^{-n}(x+\zeta y) \equiv \operatorname{ra}(\bmod p) .
$$

Since r and a are real, by taking conjugates we also have

$$
\zeta^{n}\left(x+\zeta^{-1} y\right) \equiv r a(\bmod p) .
$$

Taking the difference of these two congruences we get

$$
\gamma=\zeta^{n} x+\zeta^{n-1} y-\zeta^{-n} x-\zeta^{-n+1} y \equiv 0(\bmod p)
$$

(e) Assume that $p \nmid x y z$. By part (d) we have $\gamma=\beta p$ for some $\beta \in \mathbb{Z}[\zeta]$. Note that if $I \subset\{0, \ldots, p-1\}$ is any subset of size $p-1$, then $\zeta^{i}, i \in I$ form a \mathbb{Z}-basis for $\mathbb{Z}[\zeta]$. Since $p \geq 5$ we can pick such a set I that contains the residues $J=\{\bar{n}, \overline{n-1}, \overline{-n}, \overline{-n+1}\}$ modulo p. From this we conclude that if we write γ with respect to exponents in J, all coefficients should be divisible by p.

Note that $n, n-1,-n,-n+1$ are all distinct modulo p unless $n \equiv 0,1$, or $\frac{p+1}{2} \bmod p$. In this case we must have $p \mid x, y$, contradicting our assumption $p \nmid x y z$.

Assume that $n \equiv 0(\bmod p)$. Then $\gamma=y \zeta^{p-1}-y \zeta$ and hence $p \mid y$, a contradiction.
Similarly, if $n \equiv 1(\bmod p)$, then $\gamma=x \zeta-x \zeta^{p-1}$ and hence $p \mid x$, a contradiction.
Finally, if $2 n \equiv 1(\bmod p)$, then $\gamma=\zeta^{n}(x-y)+\zeta^{n-1}(y-x)$, from which we see that $x \equiv y(\bmod p)$. Since the original equation $x^{p}+y^{p}+z^{p}$ is symmetric in x, y, z, repeating this argument we get $y \equiv z(\bmod p)$, and thus $3 x^{p} \equiv 0(\bmod p)$. But since $p \geq 5$, this can only happen if $p \mid x$, again contradicting our assumption.

Thus in each case we obtained a contradiction, and hence we must have $p \mid x y z$.

