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Solutions to Exercise Sheet 3

Exercise 3.1. Let K = Q(α), where α = 4
√

2, and let Tr = TrK/Q.

(a) Show that Tr(a+ bα + cα2 + dα3) = 4a for a, b, c, d ∈ Q;

(b) Use part (a) to show that
√

3 6∈ K.

Solution.
(a) The complex embeddings of K are σj(

4
√

2) = ij 4
√

2, j = 1, . . . , 4, from which we
find Tr(αj) = 0, j = 1, 2, 3, and therefore Tr(a+ bα + cα2 + dα3) = 4a, as claimed.

(b) Assume that
√

3 = a+ bα+ cα2 +dα3. Since TrQ(
√
3)/Q(
√

3) = 0, by transitivity of

the trace we have Tr(
√

3) = 2 · 0 = 0, thus a = 0. Next, we compute 4b = Tr(
√

3/ 4
√

2) =
Tr( 4

√
9/2) = 0, since the 4 conjugates of 4

√
9/2 are ± 4

√
9/2 and ±i 4

√
9/2.

Now we have
√

3 = cα2+dα3, from which, after dividing by α2, we find
√

3/2 = c+dα.

Again taking the trace we get c = 0, so that
√

3/2 = d 4
√

2. However, this implies√
2 = 3

2d2
, which contradicts

√
2 6∈ Q (alternatively, taking the trace of

√
3/2/ 4
√

2 we get

d = 0, so that
√

3 = 0, a contradiction).

Exercise 3.2. Let K/Q be an algebraic extension of degree n, and let α1, . . . , αn ∈ OK .

(a) Let σ1, . . . , σn be the complex embeddings of K and define

P =
∑
π∈Sn

sgn(π)=1

n∏
j=1

σπ(j)(αj) ,

N =
∑
π∈Sn

sgn(π)=−1

n∏
j=1

σπ(j)(αj) .

Show that P +N and PN are integers.

(b) Use part (a) to show that the discriminant d(α1, . . . , αn) is congruent to 0 or 1
modulo 4.

(c) Let σ1, . . . , σr1 , σr1+1, σr1+1, . . . , σr1+r2 , σr1+r2 , n = r1 + 2r2 be the complex embed-
dings of K, where σi(K) ⊂ R, i = 1, . . . , r1, and σi(K) 6⊂ R, i = r1 + 1, . . . , r1 + r2.
Assuming that d(α1, . . . , αn) 6= 0 show that its sign is (−1)r2 .
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Solution. (a) Let L/Q be the normal closure of K. Then L is Galois over Q and contains
σj(K), j = 1, . . . , n. Note that for any element σ ∈ Gal(L/K) and any embedding σj of
K the composition σ ◦ σj is again an embedding, and hence composing with σ induces
a permutation of σ1, . . . , σn. Depending on whether this permutation is even or odd, σ
either fixes P and N , or interchanges them.

Therefore, σ(P + N) = P + N and σ(PN) = PN for all σ ∈ Gal(L/Q). This shows
that P +N and PN are in Q. However, since P and N are defined as sums of products
of algebraic integers, we also have that P +N and PN are algebraic integers, and hence
P +N,PN ∈ Z.

(b) We have det(σi(αj)) = P −N , and thus d(α1, . . . , αn) = (P −N)2 = (P +N)2 −
4PN . Therefore, we get the result from part (a), since squares of integers are congruent
to 0 or 1 modulo 4.

(c) Let vi = (σi(α1), . . . , σi(αn)) for i = 1, . . . , r1 + r2. Then d(α1, . . . , αn) is the
square of the determinant of a matrix with rows v1, . . . , vr1 , vr1+1, vr1+1, . . . , vr1+r2 , vr1+r2 .

Note that applying a row transformation (u, v) 7→ (1
2
(u + v), 1

2i
(u − v)) multi-

plies the determinant of the matrix by i
2
. Applying this transformation to each

pair of conjugate vectors vr1+j, vr1+j, j = 1, . . . , r2, we obtain that d(α1, . . . , αn)
is equal to (−1/4)r2 times the square of the determinant of the matrix with rows
v1, . . . , vr1 ,Re(vr1+1), Im(vr1+1), . . . ,Re(vr1+r2), Im(vr1+r2). Since this latter matrix has
real entries, the square of its determinant is a nonnegative real number, and hence the
sign of d(α1, . . . , αn) is equal to (−1)r2 .

Exercise 3.3. Let K = Q(α), where α3 − α2 − 2α − 8 = 0. Recall that OK is a free
Z-module spanned by {ω1, ω2, ω3} for some ωi ∈ OK .

(a) Compute the discriminant d(1, α, α
2−α
2

);

(b) Show that OK is the integral span of {1, α, α2−α
2
};

(c) Show that OK does not have the form Z[γ] for any γ ∈ OK .

Solution. (a) Note that TrK/Q(1) = 3 and TrK/Q(α) = 1. Since α2 satisfies x3 − 5x2 −
12x − 64 = 0 we also have TrK/Q(α2) = 5. Hence TrK/Q(a + bα + cα2) = 3a + b + 5c.
From this we compute the discriminant d(1, α, β) using traces:

d(1, α, β) = det

3 1 2
1 5 13
2 13 −2

 = −503 .

(b) First, we check that β = α2−α
2

satisfies x3 − 2x2 + 3x − 10, thus β ∈ OK . Since
OK is the integral span of {ω1, ω2, ω3} for some ωi, there is an integral transition matrix
A from {1, α, β} to {ω1, ω2, ω3}. Then we have d(ω1, ω2, ω3) det(A)2 = d(1, α, β) = −503.
Since 503 is squarefree, we have det(A) = ±1, and the integral spans of {1, α, β} and
{ω1, ω2, ω3} coincide and are both equal to OK .

(c) Assume that OK = Z[γ] for some γ ∈ OK . By part (a) we may assume that
γ = aα + bβ + c, where a, b, c ∈ Z, and further we may assume that c = 0, since
Z[γ] = Z[γ − c]. The transition matrix from {1, γ, γ2} to {1, α, β} is then given by 1 0 0

0 a b
2b(4a− b) a2 + 2ab+ 2b2 2a2 + b2

 .
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Its determinant is equal to 2a3 − a2b − ab2 − 2b3. Since a2b + ab2 = ab(a + b) is always
even, this determinant is divisible by 2 for any choice of a, b, hence OK 6= Z[γ].

Exercise 3.4*. Let K = Q(
√
−2,
√
−5).

(a) Show that OK is the integral span of {1,
√
−2,
√
−5,

√
−2+

√
10

2
};

(b) Show that OK does not have the form Z[γ] for any γ ∈ OK .

Solution. (a) Let α = a+ b
√
−2 + c

√
−5 + d

√
10 ∈ OK . Then all of its conjugates are

also algebraic integers:

α2 = a− b
√
−2 + c

√
−5− d

√
10 ,

α3 = a+ b
√
−2− c

√
−5− d

√
10 ,

α4 = a− b
√
−2− c

√
−5 + d

√
10 .

Since α + α2 = 2a + 2c
√
−5 is an algebraic integer in Q(

√
−5), we get 2a, 2c ∈ Z (since

−5 ≡ 3 (mod 4)). Similarly, from α+ α3 we get 2b ∈ Z, and from α+ α4 we get 2d ∈ Z.

We write α = A+B
√
−2+C

√
−5+D

√
10

2
, where A,B,C,D ∈ Z. Then αα2 is an algebraic

integer, thus

(a+ c
√
−5)2 + 2(b+ d

√
−5)2 =

A2 − 5C2 + 2B2 − 10D2

4
+
AC + 2BD

2

√
−5 ∈ Z[

√
−5] .

From this we see that 2|AC and 4|A2− 5C2 + 2B2− 10D2. From the first divisibility we
have that at least one of A or C is even, and from the second we get 2|A2−C2, hence A
and C have the same parity. Thus 2|A,C. Then we get 2|(B2 −D2), so that B and D

have the same parity. This implies that {1,
√
−2,
√
−5,

√
−2+

√
10

2
} is an integral basis.

(b) Consider the elements αi = (1 ±
√
−2)(1 ±

√
−5), i = 1, . . . , 4. Then one can

check that 3|αiαj for all i 6= j. Also note that α1 + α2 + α3 + α4 = 4. This implies that

1 ≡ (α1 + α2 + α3 + α4)
n ≡ αn1 + αn2 + αn3 + αn4 (mod 3) .

From this we get that 3 - αn1 , since otherwise we would have 3|αni , i = 1, 2, 3, 4, and then 3
would also divide αn1 + αn2 + αn3 + αn4 . Assume that OK = Z[γ] for some γ ∈ OK , let
f(x) ∈ Z[x] be the minimal polynomial of γ, and let αi = fi(γ), fi ∈ Z[x].

For any g in Z[x] we consider g ∈ (Z/3Z)[x], obtained by reduction mod 3. Note that
3|g(γ) in Z[γ] if and only if f |g in (Z/3Z)[x] (indeed, both statements are equivalent to
the existence of h, r ∈ Z[x] such that g(x) = 3h(x) + f(x)r(x)).

From the above divisibility properties for αi we get f |fifj for all i 6= j, but f - fi
n

for any i, n. This implies that for each i = 1, 2, 3, 4, f has an irreducible factor that
divides fi, but not any fj for j 6= i.

Thus f has at least 4 different irreducible factors. On the other hand, deg(f) = 4, so
this means that f has 4 different linear factors, but in (Z/3Z)[x] there are only 3 different
monic linear polynomials: x, x− 1, x− 2. This contradiction shows that OK 6= Z[γ].
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