Introduction to Algebraic Number Theory

Lecturer: Prof. Dr. Özlem Imamoglu
Coordinator: Dr. Danylo Radchenko

Solutions to Exercise Sheet 8

Exercise 8.1. Use the Minkowski bound $M_{K}=\frac{n!}{n^{n}}(4 / \pi)^{r_{2}}\left|\Delta_{K}\right|^{1 / 2}$ to compute class numbers h_{K} of the following fields.
(a) $K=\mathbb{Q}(\alpha)$, where $\alpha^{3}-\alpha-1=0$.
(b) $K=\mathbb{Q}(\sqrt{-D})$ for $D=11$ and $D=19$.

Solution.

(a) We have $n=3, r_{1}=r_{2}=1$ and recall that $\left|\Delta_{K}\right|=23$, thus $M_{K}=\frac{8 \sqrt{23}}{9 \pi}=$ $1.356 \ldots<2$. Therefore, every ideal class contains an integral ideal of norm 1, i.e. \mathcal{O}_{K}, and hence every ideal is principal, so that $h_{K}=1$.
(b) We have $M_{K}=\frac{2 \sqrt{11}}{\pi}=2.111 \ldots<3$ or $M_{K}=\frac{2 \sqrt{19}}{\pi}=2.774 \ldots<3$. Therefore, in both cases every ideal class contains an integral ideal of norm ≤ 2.

Let us show that (2) is a prime ideal in $\mathbb{Q}(\sqrt{-D})$ for all $D \equiv 3(\bmod 8)$. This implies that in these cases there are no ideals of norm 2, and thus $h_{K}=1$ for $D=11,19$.

Let $\alpha=\frac{\sqrt{-D}-1}{2}$, where $D=8 k-5$, so that $\mathcal{O}_{K}=\mathbb{Z}[\alpha]$ and $\alpha^{2}+\alpha+(2 k-1)=0$. Then $\mathcal{O}_{K} / 2 \mathcal{O}_{K}=\{\overline{0}, \overline{1}, \bar{\alpha}, \overline{\alpha+1}\}$. Since $\alpha(\alpha+1)=1-2 k \equiv 1(\bmod 2)$, we get that $\bar{\alpha}$ and $\overline{\alpha+1}$ are invertible in $\mathcal{O}_{K} /(2)$, and hence $\mathcal{O}_{K} /(2)$ is a field. This shows that (2) is a prime ideal.

Exercise 8.2. Let p be a prime congruent to 1 modulo 4 . Recall that -1 is a quadratic residue, so that there exists $r \in \mathbb{Z}$ such that $p \mid r^{2}+1$. Consider the lattice $\Lambda \subset \mathbb{Z}^{2}$ generated by $(0, p)$ and $(1, r)$.
(a) Show that Λ contains a vector of length less than $\sqrt{2 p}$;
(b) Use (a) to prove that $p=a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$.

Solution. (a) Since $\operatorname{det}\left(\begin{array}{ll}0 & p \\ 1 & r\end{array}\right)=-p$ we have that $|\Lambda|=p$. Note that the volume of the ball $B_{\sqrt{2 p}}(0) \subset \mathbb{R}^{2}$ is $2 \pi p>4 p$. Therefore, by Minkowski's theorem there exists a non-zero vector in $B_{\sqrt{2 p}}(0) \cap \Lambda$.
(b) By part (a) there exists a non-zero vector $(a, b)=(l, k p+r l)$ such that $a^{2}+b^{2}<2 p$. Since $a^{2}+b^{2}=p\left(k^{2} p+2 k l r\right)+l^{2}\left(1+r^{2}\right) \equiv 0(\bmod p)$ and $0<a^{2}+b^{2}<2 p$, the only possibility is $a^{2}+b^{2}=p$.

Exercise 8.3. In this exercise we prove Lagrange's four-square theorem. Recall that the volume of a ball of radius R in $\mathbb{R}^{2 k}$ is $\frac{\pi^{k} R^{2 k}}{k!}$.
(a) Verify Euler's identity

$$
\begin{aligned}
\left(a^{2}+b^{2}+c^{2}+d^{2}\right)\left(x^{2}+y^{2}+z^{2}+t^{2}\right) & =(a x-b y-c z-d t)^{2}+(a y+b x+c t-d z)^{2} \\
& +(a z-b t+c x+d y)^{2}+(a t+b z-c y+d x)^{2} .
\end{aligned}
$$

(b) Show that for any prime p there exist integers r, s such that $p \mid r^{2}+s^{2}+1$.
(c) Consider the lattice $\Lambda=\left\{(a, b, c, d) \in \mathbb{Z}^{4} \mid a \equiv r c+s d(\bmod p), b \equiv r d-s c(\bmod p)\right\}$, where r and s are as in part (b). Show that the covolume of Λ is $|\Lambda|=p^{2}$ and that there exists a nonzero vector $(a, b, c, d) \in \Lambda$ such that $a^{2}+b^{2}+c^{2}+d^{2}<2 p$;
(d) Using (a) and (c) show that any non-negative integer can be written as a sum of four perfect squares.

Solution. (a) This is a direct calculation.
(b) If $p=2$ then $p=1^{2}+0^{2}+1$. Assume that $p>2$ is odd. Note that there are $\frac{p+1}{2}$ square residues modulo p : $S=\left\{0^{2}, 1^{2}, \ldots,\left(\frac{p-1}{2}\right)^{2}\right\} \subseteq \mathbb{Z} / p \mathbb{Z}$.

Let $A=S$ and $B=\{-1-s \mid s \in S\}$ be two subsets of $\mathbb{Z} / p \mathbb{Z}$. Since $|A|=|B|=\frac{p+1}{2}$ we have that $|A|+|B|=p+1>p$. Hence $A \cap B \neq \emptyset$ and there exists some element $x \in A \cap B$. By definition this means that $x \equiv r^{2}(\bmod p)$ and $x \equiv-1-s^{2}(\bmod p)$ for some $r, s \in \mathbb{Z}$. But then $r^{2}+s^{2}+1 \equiv x-x \equiv 0(\bmod p)$ as claimed.
(c) The lattice Λ is generated by $(p, 0,0,0),(0, p, 0,0),(r,-s, 1,0),(s, r, 0,1)$ (this is so since 3 rd and 4 th coordinates can be chosen freely and then the first two are uniquely determined modulo p). The determinant is

$$
\operatorname{det}\left(\begin{array}{cccc}
p & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
r & -s & 1 & 0 \\
s & r & 0 & 1
\end{array}\right)=p^{2}
$$

Since the volume of the ball $B_{\sqrt{2 p}}(0) \subset \mathbb{R}^{4}$ is $2 \pi^{2} p^{2}>2^{4} p^{2}$, by Minkowski's theorem we get that there exists a non-zero vector $(a, b, c, d) \in \Lambda$ such that $a^{2}+b^{2}+c^{2}+d^{2}<2 p$.
(d) The vector from part (c) satisfies $0<a^{2}+b^{2}+c^{2}+d^{2}<2 p$. Moreover,

$$
\begin{aligned}
a^{2}+b^{2}+c^{2}+d^{2} & \equiv(r c+s d)^{2}+(r d-s c)^{2}+c^{2}+d^{2} \\
& \equiv\left(c^{2}+d^{2}\right)\left(r^{2}+s^{2}+1\right) \equiv 0(\bmod p) .
\end{aligned}
$$

Since the only multiple of p between 0 and $2 p$ is p itself, we get $a^{2}+b^{2}+c^{2}+d^{2}=p$. Therefore, every prime can be written as a sum of four squares. By part (a) if n and m can be written as sums of four squares of integers, then so is their product. Thus by factoring into primes we conclude that any positive integer can be written as a sum of four squares.

Exercise 8.4*. Show that for any d there exist only finitely many number fields $K \subset \mathbb{C}$ of discriminant $\Delta_{K}=d$.
(Hint: construct a convex body $B \subset \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ of volume $2^{n-r_{2}}|d|^{1 / 2}$ such that all but one of coordinates are bounded in absolute value by $1 / 2$ on B. Show that for any non-zero $x \in \mathcal{O}_{K}$ that maps to B its minimal polynomial is of degree n with bounded coefficients.)

Solution. We let d be fixed and let K be a number field with $\Delta_{K}=d$. Without loss of generality assume that $n \geq 2$. Since the norm of any ideal is ≥ 1 we have $M_{K} \geq 1$ and thus for all sufficiently large n we have

$$
|d|^{1 / 2} \geq \frac{n^{n}}{n!}(\pi / 4)^{r_{2}} \geq \frac{(n \sqrt{\pi} / 2)^{n}}{n!} \geq \frac{(n \sqrt{\pi} / 2)^{n}}{n^{2}(n / e)^{n}} \geq \frac{2^{n}}{n^{2}}
$$

where we have used $r_{2} \leq n / 2$ and $n!\leq n^{2}(n / e)^{n}$ that follows from Stirling's formula for sufficiently large n (in fact the last inequality is true for all $n \geq 2$). Since $2^{n} / n^{2} \rightarrow \infty$ as $n \rightarrow \infty$ and d is fixed, the degree n must be bounded, leaving only finitely many possibilities for n. Therefore, since $n=r_{1}+2 r_{2}$, it is enough to show finiteness of the set of number fields of discriminant d for fixed r_{1} and r_{2}.

Let $i: K \rightarrow \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ be the standard embedding. Define $B \subset \mathbb{R}^{r_{1}} \times \mathbb{C}^{r_{2}}$ by requiring that $\left(y_{1}, \ldots, y_{r_{1}}, z_{1}, \ldots, z_{r_{2}}\right) \in B$ if and only if

$$
\left|y_{1}\right| \leq 2^{n}(2 / \pi)^{r_{2}}|d|^{1 / 2}, \quad\left|y_{j}\right| \leq 1 / 2, j \geq 2, \quad\left|z_{j}\right| \leq 1 / 2, j \geq 1
$$

if $r_{1}>0$ and

$$
\left|\operatorname{Im}\left(z_{1}\right)\right| \leq 2^{n-1}(2 / \pi)^{r_{2}-1}|d|^{1 / 2}, \quad\left|\operatorname{Re}\left(z_{1}\right)\right| \leq 1 / 4, \quad\left|z_{j}\right| \leq 1 / 2, j \geq 2
$$

otherwise. In all cases B is a compact centrally-symmetric convex body and $\operatorname{vol}(B)=$ $2^{n-r_{2}}|d|^{1 / 2}$.

By Theorem 5.3 from the lectures the volume of the fundamental region for $\Lambda=i\left(\mathcal{O}_{K}\right)$ is $2^{-r_{2}}|d|^{1 / 2}$. Therefore, by Minkowski's theorem there exists a non-zero $\alpha \in \mathcal{O}_{K}$ such that $i(\alpha) \in B$. Since $\alpha \in \mathcal{O}_{K}$, the absolute value of $N_{K / \mathbb{Q}}(\alpha)$ is a positive integer, i.e., $\left|\sigma_{1}(\alpha)\right| \prod_{j=2}^{n}\left|\sigma_{j}(\alpha)\right| \in \mathbb{Z}_{>0}$. By definition of B we have $\left|\sigma_{j}(\alpha)\right| \leq 1 / 2$ for $j \geq 2$, and therefore $\left|\sigma_{1}(\alpha)\right|>1$.

If $r_{1}>0$, this shows that $\sigma_{1}(\alpha) \neq \sigma_{j}(\alpha), j \neq 1$, and thus α is a primitive element of K, i.e., $K=\mathbb{Q}(\alpha)$. Indeed, if it were not primitive, its characteristic polynomial would be equal to some power (>1) of its minimal polynomial, and hence $\sigma_{1}(\alpha)$ would be equal to $\sigma_{j}(\alpha)$ for some $j \neq 1$.

If $r_{1}=0, \sigma_{1}$ is a complex embedding, and thus there is still the possibility that $\sigma_{1}(\alpha)=\overline{\sigma_{1}(\alpha)}$. However, since $\left|\operatorname{Re}\left(\sigma_{1}(\alpha)\right)\right| \leq 1 / 4$ and $\left|\sigma_{1}(\alpha)\right|>1, \sigma_{1}(\alpha)$ cannot be real, and thus $\sigma_{1}(\alpha) \neq \overline{\sigma_{1}(\alpha)}$. Therefore, in this case α is also primitive.

Finally, since B is bounded, all conjugates $\sigma_{j}(\alpha)$ are bounded. Since the characteristic polynomial of α is $p(x)=\prod_{j=1}^{n}\left(x-\sigma_{j}(\alpha)\right)$, this implies that all its coefficients are also bounded. But $p(x) \in \mathbb{Z}[x]$, so there are only finitely many possibilities for $p(x)$, and hence for α. Since α is primitive, $K=\mathbb{Q}(\alpha)$ and we conclude that there are only finitely many number fields of discriminant d.

