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Coordinator: Dr. Danylo Radchenko

Solutions to Exercise Sheet 8

Exercise 8.1. Use the Minkowski bound Mg = 2(4/m)"2|Ak|'/? to compute class
numbers hy of the following fields.

(a) K =Q(a), where a® —a —1=0.
(b) K =Q(v/—D) for D =11 and D = 19.

Solution.

(a) We have n = 3, 11 = r3 = 1 and recall that [Ag| = 23, thus My = 52 =
1.356... < 2. Therefore, every ideal class contains an integral ideal of norm 1, i.e. O,
and hence every ideal is principal, so that hyx = 1.

(b) We have My = 241 = 2.111... < 3 or Mg = 242 = 2.774... < 3. Therefore, in
both cases every ideal class contains an integral ideal of norm < 2.

Let us show that (2) is a prime ideal in Q(y/—D) for all D = 3 (mod 8). This implies
that in these cases there are no ideals of norm 2, and thus hx =1 for D = 11, 19.

Let o = @, where D = 8k — 5, so that O = Z[a] and o + a + (2k — 1) = 0.
Then Ok /20K = {0,1,@,a + 1}. Since a(a +1) =1 — 2k =1 (mod 2), we get that @
and o« + 1 are invertible in Ok /(2), and hence Ok /(2) is a field. This shows that (2) is
a prime ideal.
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Exercise 8.2. Let p be a prime congruent to 1 modulo 4. Recall that —1 is a quadratic
residue, so that there exists r € Z such that p|r? + 1. Consider the lattice A C Z2
generated by (0,p) and (1,7).

(a) Show that A contains a vector of length less than /2p;

(b) Use (a) to prove that p = a® + b* for some a,b € Z.
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the ball B s5;(0) C R? is 2mp > 4p. Therefore, by Minkowski’s theorem there exists a
non-zero vector in B ;(0) N A.

(b) By part (a) there exists a non-zero vector (a, b) = (I, kp+rl) such that a®>+b* < 2p.
Since a? + b* = p(k®p + 2kir) + 1*(1 + r?) = 0 (mod p) and 0 < a® + b* < 2p, the only
possibility is a? + b* = p.

Solution. (a) Since det = —p we have that |A| = p. Note that the volume of

Exercise 8.3. In this exercise we prove Lagrange’s four-square theorem. Recall that the

volume of a ball of radius R in R?* is “%%.



(a) Verify Euler’s identity

(@ + b+ +d) (2 +y? + 22+ %) = (ax — by — cz — dt)* + (ay + bz + ct — dz)?
+ (az — bt + cx + dy)* + (at + bz — cy + dz)*.

(b) Show that for any prime p there exist integers r, s such that p|r? 4+ s? + 1.

(c) Consider the lattice A = {(a,b,c,d) € Z* | a = rc+sd (mod p), b = rd—sc (mod p)},
where r and s are as in part (b). Show that the covolume of A is |A| = p* and that
there exists a nonzero vector (a,b,c,d) € A such that a® + b + ¢ + d* < 2p;

(d) Using (a) and (c) show that any non-negative integer can be written as a sum of
four perfect squares.

Solution. (a) This is a direct calculation.

(b) If p = 2 then p = 12 4+ 0> + 1. Assume that p > 2 is odd. Note that there are 2+
square residues modulo p: S = {0%,1%,..., (5+)?*} C Z/pZ.

Let A= S and B ={-1—s|s € S} be two subsets of Z/pZ. Since |A| = |B| = &1
we have that |A| +|B| = p+ 1 > p. Hence AN B # () and there exists some element
r € AN B. By definition this means that z = r? (mod p) and z = —1 — s? (mod p) for
some 7,5 € Z. But then 7 + s> +1=x — 2 = 0 (mod p) as claimed.

(c) The lattice A is generated by (p,0,0,0), (0,p,0,0), (r,—s,1,0), (s,r,0,1) (this is
so since 3rd and 4th coordinates can be chosen freely and then the first two are uniquely
determined modulo p). The determinant is

p 0 00

0O p 00| 5
detr—slo_p'

s r 01

Since the volume of the ball B ;(0) C R is 27?p® > 2%p?, by Minkowski’s theorem we
get that there exists a non-zero vector (a,b,c,d) € A such that a? + b* + ¢ + d* < 2p.

d) The vector from part (c) satisfies 0 < a® + b? + ¢ + d? < 2p. Moreover
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a + 0+ +d* = (re+sd)® + (rd — sc)® + & + d
= (A +d*)(r*+s*+1) =0 (mod p).

Since the only multiple of p between 0 and 2p is p itself, we get a® + b* + 2 + d* = p.
Therefore, every prime can be written as a sum of four squares. By part (a) if n and
m can be written as sums of four squares of integers, then so is their product. Thus by
factoring into primes we conclude that any positive integer can be written as a sum of
four squares.

Exercise 8.4%. Show that for any d there exist only finitely many number fields K C C
of discriminant Ay = d.

(Hint: construct a conver body B C R™ x C™ of volume 2" "2|d|"/? such that all but
one of coordinates are bounded in absolute value by 1/2 on B. Show that for any non-zero
x € Ok that maps to B its minimal polynomial is of degree n with bounded coefficients.)



Solution. We let d be fixed and let K be a number field with Ag = d. Without loss of
generality assume that n > 2. Since the norm of any ideal is > 1 we have My > 1 and
thus for all sufficiently large n we have

]!/ > ”—7(7/4)% S (T/2r (a2 2

n! n?(n/e)® — n2’

where we have used ro < n/2 and n! < n%(n/e)” that follows from Stirling’s formula for
sufficiently large n (in fact the last inequality is true for all n > 2). Since 2"/n* — oo
as n — oo and d is fixed, the degree n must be bounded, leaving only finitely many
possibilities for n. Therefore, since n = ry + 2r,, it is enough to show finiteness of the set
of number fields of discriminant d for fixed r; and 5.

Let i: K — R™ x C™ be the standard embedding. Define B C R x C" by requiring
that (y1,-..,Ym, 21, -+, 2r,) € B if and only if

| < 27(2/m)2|dME gl <1/2, 5 >2, |zl <1/2, 5>1
if r; > 0 and
Im(z)] < 2771 2/m)>7Yd[Y?,  [Re(z1)] < 1/4, |z <1/2, 5 >2

otherwise. In all cases B is a compact centrally-symmetric convex body and vol(B) =
2n7r2|d|1/2.

By Theorem 5.3 from the lectures the volume of the fundamental region for A = i(Ok)
is 2772|d|'/2. Therefore, by Minkowski’s theorem there exists a non-zero a € O such
that i(a) € B. Since a € O, the absolute value of Nk () is a positive integer, i.e.,
o1 (@) [ 1=y loj(@)] € Zso. By definition of B we have |o;(a)| < 1/2 for j > 2, and
therefore |o(a)| > 1.

If 4 > 0, this shows that o(a) # 0,(a), j # 1, and thus « is a primitive element of
K, ie., K = Q(«a). Indeed, if it were not primitive, its characteristic polynomial would
be equal to some power (> 1) of its minimal polynomial, and hence o () would be equal
to 0;(a) for some j # 1.

If 1 = 0, 0y is a complex embedding, and thus there is still the possibility that
o1(a) = 01(a). However, since |[Re(o1(a))| < 1/4 and |oy(a)| > 1, o1(a) cannot be real,
and thus oy () # o1(a). Therefore, in this case « is also primitive.

Finally, since B is bounded, all conjugates o;(a) are bounded. Since the characteristic
polynomial of av is p(z) = [[;_,(z — 0;()), this implies that all its coefficients are also
bounded. But p(x) € Z[z], so there are only finitely many possibilities for p(z), and
hence for a.. Since « is primitive, K = Q(«) and we conclude that there are only finitely
many number fields of discriminant d.




