Introduction to Algebraic Number Theory

Lecturer: Prof. Dr. Ozlem Imamoglu Coordinator: Dr. Danylo Radchenko

Solutions to Exercise Sheet 8

Exercise 8.1. Use the Minkowski bound $M_K = \frac{n!}{n^n} (4/\pi)^{r_2} |\Delta_K|^{1/2}$ to compute class numbers h_K of the following fields.

- (a) $K = \mathbb{Q}(\alpha)$, where $\alpha^3 \alpha 1 = 0$.
- (b) $K = \mathbb{Q}(\sqrt{-D})$ for D = 11 and D = 19.

Solution.

(a) We have n = 3, $r_1 = r_2 = 1$ and recall that $|\Delta_K| = 23$, thus $M_K = \frac{8\sqrt{23}}{9\pi} = 1.356... < 2$. Therefore, every ideal class contains an integral ideal of norm 1, i.e. \mathcal{O}_K , and hence every ideal is principal, so that $h_K = 1$.

and hence every ideal is principal, so that $h_K = 1$. (b) We have $M_K = \frac{2\sqrt{11}}{\pi} = 2.111... < 3$ or $M_K = \frac{2\sqrt{19}}{\pi} = 2.774... < 3$. Therefore, in both cases every ideal class contains an integral ideal of norm ≤ 2 .

Let us show that (2) is a prime ideal in $\mathbb{Q}(\sqrt{-D})$ for all $D \equiv 3 \pmod{8}$. This implies that in these cases there are no ideals of norm 2, and thus $h_K = 1$ for D = 11, 19.

Let $\alpha = \frac{\sqrt{-D}-1}{2}$, where D = 8k - 5, so that $\mathcal{O}_K = \mathbb{Z}[\alpha]$ and $\alpha^2 + \alpha + (2k - 1) = 0$. Then $\mathcal{O}_K/2\mathcal{O}_K = \{\overline{0}, \overline{1}, \overline{\alpha}, \overline{\alpha+1}\}$. Since $\alpha(\alpha + 1) = 1 - 2k \equiv 1 \pmod{2}$, we get that $\overline{\alpha}$ and $\overline{\alpha + 1}$ are invertible in $\mathcal{O}_K/(2)$, and hence $\mathcal{O}_K/(2)$ is a field. This shows that (2) is a prime ideal.

Exercise 8.2. Let p be a prime congruent to 1 modulo 4. Recall that -1 is a quadratic residue, so that there exists $r \in \mathbb{Z}$ such that $p|r^2 + 1$. Consider the lattice $\Lambda \subset \mathbb{Z}^2$ generated by (0, p) and (1, r).

- (a) Show that Λ contains a vector of length less than $\sqrt{2p}$;
- (b) Use (a) to prove that $p = a^2 + b^2$ for some $a, b \in \mathbb{Z}$.

Solution. (a) Since det $\begin{pmatrix} 0 & p \\ 1 & r \end{pmatrix} = -p$ we have that $|\Lambda| = p$. Note that the volume of the ball $B_{\sqrt{2p}}(0) \subset \mathbb{R}^2$ is $2\pi p > 4p$. Therefore, by Minkowski's theorem there exists a non-zero vector in $B_{\sqrt{2p}}(0) \cap \Lambda$.

(b) By part (a) there exists a non-zero vector (a, b) = (l, kp+rl) such that $a^2+b^2 < 2p$. Since $a^2 + b^2 = p(k^2p + 2klr) + l^2(1 + r^2) \equiv 0 \pmod{p}$ and $0 < a^2 + b^2 < 2p$, the only possibility is $a^2 + b^2 = p$.

Exercise 8.3. In this exercise we prove Lagrange's four-square theorem. Recall that the volume of a ball of radius R in \mathbb{R}^{2k} is $\frac{\pi^k R^{2k}}{k!}$.

(a) Verify Euler's identity

$$(a^{2} + b^{2} + c^{2} + d^{2})(x^{2} + y^{2} + z^{2} + t^{2}) = (ax - by - cz - dt)^{2} + (ay + bx + ct - dz)^{2} + (az - bt + cx + dy)^{2} + (at + bz - cy + dx)^{2}$$

- (b) Show that for any prime p there exist integers r, s such that $p|r^2 + s^2 + 1$.
- (c) Consider the lattice $\Lambda = \{(a, b, c, d) \in \mathbb{Z}^4 \mid a \equiv rc + sd \pmod{p}, b \equiv rd sc \pmod{p}\},\$ where r and s are as in part (b). Show that the covolume of Λ is $|\Lambda| = p^2$ and that there exists a nonzero vector $(a, b, c, d) \in \Lambda$ such that $a^2 + b^2 + c^2 + d^2 < 2p$;
- (d) Using (a) and (c) show that any non-negative integer can be written as a sum of four perfect squares.

Solution. (a) This is a direct calculation.

(b) If p = 2 then $p = 1^2 + 0^2 + 1$. Assume that p > 2 is odd. Note that there are $\frac{p+1}{2}$ square residues modulo p: $S = \{0^2, 1^2, \dots, (\frac{p-1}{2})^2\} \subseteq \mathbb{Z}/p\mathbb{Z}$.

Let A = S and $B = \{-1 - s \mid s \in S\}$ be two subsets of $\mathbb{Z}/p\mathbb{Z}$. Since $|A| = |B| = \frac{p+1}{2}$ we have that |A| + |B| = p + 1 > p. Hence $A \cap B \neq \emptyset$ and there exists some element $x \in A \cap B$. By definition this means that $x \equiv r^2 \pmod{p}$ and $x \equiv -1 - s^2 \pmod{p}$ for some $r, s \in \mathbb{Z}$. But then $r^2 + s^2 + 1 \equiv x - x \equiv 0 \pmod{p}$ as claimed.

(c) The lattice Λ is generated by (p, 0, 0, 0), (0, p, 0, 0), (r, -s, 1, 0), (s, r, 0, 1) (this is so since 3rd and 4th coordinates can be chosen freely and then the first two are uniquely determined modulo p). The determinant is

$$\det \begin{pmatrix} p & 0 & 0 & 0\\ 0 & p & 0 & 0\\ r & -s & 1 & 0\\ s & r & 0 & 1 \end{pmatrix} = p^2.$$

Since the volume of the ball $B_{\sqrt{2p}}(0) \subset \mathbb{R}^4$ is $2\pi^2 p^2 > 2^4 p^2$, by Minkowski's theorem we get that there exists a non-zero vector $(a, b, c, d) \in \Lambda$ such that $a^2 + b^2 + c^2 + d^2 < 2p$.

(d) The vector from part (c) satisfies $0 < a^2 + b^2 + c^2 + d^2 < 2p$. Moreover,

$$a^{2} + b^{2} + c^{2} + d^{2} \equiv (rc + sd)^{2} + (rd - sc)^{2} + c^{2} + d^{2}$$
$$\equiv (c^{2} + d^{2})(r^{2} + s^{2} + 1) \equiv 0 \pmod{p}.$$

Since the only multiple of p between 0 and 2p is p itself, we get $a^2 + b^2 + c^2 + d^2 = p$. Therefore, every prime can be written as a sum of four squares. By part (a) if n and m can be written as sums of four squares of integers, then so is their product. Thus by factoring into primes we conclude that any positive integer can be written as a sum of four squares.

Exercise 8.4*. Show that for any *d* there exist only finitely many number fields $K \subset \mathbb{C}$ of discriminant $\Delta_K = d$.

(Hint: construct a convex body $B \subset \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ of volume $2^{n-r_2}|d|^{1/2}$ such that all but one of coordinates are bounded in absolute value by 1/2 on B. Show that for any non-zero $x \in \mathcal{O}_K$ that maps to B its minimal polynomial is of degree n with bounded coefficients.) **Solution.** We let d be fixed and let K be a number field with $\Delta_K = d$. Without loss of generality assume that $n \ge 2$. Since the norm of any ideal is ≥ 1 we have $M_K \ge 1$ and thus for all sufficiently large n we have

$$|d|^{1/2} \ge \frac{n^n}{n!} (\pi/4)^{r_2} \ge \frac{(n\sqrt{\pi}/2)^n}{n!} \ge \frac{(n\sqrt{\pi}/2)^n}{n^2(n/e)^n} \ge \frac{2^n}{n^2},$$

where we have used $r_2 \leq n/2$ and $n! \leq n^2(n/e)^n$ that follows from Stirling's formula for sufficiently large n (in fact the last inequality is true for all $n \geq 2$). Since $2^n/n^2 \to \infty$ as $n \to \infty$ and d is fixed, the degree n must be bounded, leaving only finitely many possibilities for n. Therefore, since $n = r_1 + 2r_2$, it is enough to show finiteness of the set of number fields of discriminant d for fixed r_1 and r_2 .

Let $i: K \to \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ be the standard embedding. Define $B \subset \mathbb{R}^{r_1} \times \mathbb{C}^{r_2}$ by requiring that $(y_1, \ldots, y_{r_1}, z_1, \ldots, z_{r_2}) \in B$ if and only if

$$|y_1| \le 2^n (2/\pi)^{r_2} |d|^{1/2}, \quad |y_j| \le 1/2, \ j \ge 2, \quad |z_j| \le 1/2, \ j \ge 1$$

if $r_1 > 0$ and

$$|\operatorname{Im}(z_1)| \le 2^{n-1} (2/\pi)^{r_2-1} |d|^{1/2}, \quad |\operatorname{Re}(z_1)| \le 1/4, \quad |z_j| \le 1/2, \ j \ge 2$$

otherwise. In all cases B is a compact centrally-symmetric convex body and $vol(B) = 2^{n-r_2}|d|^{1/2}$.

By Theorem 5.3 from the lectures the volume of the fundamental region for $\Lambda = i(\mathcal{O}_K)$ is $2^{-r_2}|d|^{1/2}$. Therefore, by Minkowski's theorem there exists a non-zero $\alpha \in \mathcal{O}_K$ such that $i(\alpha) \in B$. Since $\alpha \in \mathcal{O}_K$, the absolute value of $N_{K/\mathbb{Q}}(\alpha)$ is a positive integer, i.e., $|\sigma_1(\alpha)| \prod_{j=2}^n |\sigma_j(\alpha)| \in \mathbb{Z}_{>0}$. By definition of B we have $|\sigma_j(\alpha)| \leq 1/2$ for $j \geq 2$, and therefore $|\sigma_1(\alpha)| > 1$.

If $r_1 > 0$, this shows that $\sigma_1(\alpha) \neq \sigma_j(\alpha)$, $j \neq 1$, and thus α is a primitive element of K, i.e., $K = \mathbb{Q}(\alpha)$. Indeed, if it were not primitive, its characteristic polynomial would be equal to some power (> 1) of its minimal polynomial, and hence $\sigma_1(\alpha)$ would be equal to $\sigma_j(\alpha)$ for some $j \neq 1$.

If $r_1 = 0$, σ_1 is a complex embedding, and thus there is still the possibility that $\sigma_1(\alpha) = \overline{\sigma_1(\alpha)}$. However, since $|\operatorname{Re}(\sigma_1(\alpha))| \le 1/4$ and $|\sigma_1(\alpha)| > 1$, $\sigma_1(\alpha)$ cannot be real, and thus $\sigma_1(\alpha) \neq \overline{\sigma_1(\alpha)}$. Therefore, in this case α is also primitive.

Finally, since B is bounded, all conjugates $\sigma_j(\alpha)$ are bounded. Since the characteristic polynomial of α is $p(x) = \prod_{j=1}^n (x - \sigma_j(\alpha))$, this implies that all its coefficients are also bounded. But $p(x) \in \mathbb{Z}[x]$, so there are only finitely many possibilities for p(x), and hence for α . Since α is primitive, $K = \mathbb{Q}(\alpha)$ and we conclude that there are only finitely many number fields of discriminant d.