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Solutions to Ferienserie

Exercise 1. Let K be a quadratic extension of Q and let D be its discriminant. Show
that O = Zlap|, where ap = %ﬁ.

Solution. Since Tr(ap) = D and N(ap) = D+2‘/5 : D_z‘/ﬁ = D(a_l), we see that

D(D - 1)

=0.
4

o2 — Dap +
Since D is the discriminant of a number field, we have D = 0,1 (mod 4), so that ap is
an algebraic integer. Finally, the discriminant of {1,ap} is equal to D* — 4@ =D.
Since D is the discriminant of K, we conclude that O = Z[ap].

Exercise 2. Show that Z[y/2] is a principal ideal domain, and using this show that
+p=2>—-2y> & p=1,7 (mod38)

(here p is a prime and +p = 22 —2y* means that either p or —p can be written as 2% —2y?).

Solution. The Minkowski bound for K = Q(v/2) is V2 < 2, so Z[V/2] = O is a PID.

First, if £p = 2% — 2y2, then reducing this identity modulo p we get that 2 is a
quadratic residue modulo p (note that z,y # 0 (mod p)), and by the supplementary
quadratic reciprocity law we have p = 1,7 (mod 8).

In the other direction, let p = 1,7 (mod 8). Then 2 is a quadratic residue modulo p,
so 2% —2 factors as (r—a)(x+a) in Z/pZ. By Kummer’s factorization theorem (p) = pipo
and moreover N(p;) = N(py) = p since the extension is quadratic. Since Z[v/2] is a PID,
we have p; = (z 4+ y+/2) and thus N(z +yv/2) = £p, so that +p = 2% — 2y?, as claimed.

Exercise 3. Show that the class group of K = Q(1/—23) is isomorphic to Z/3Z and find
the representative ideals.

Solution. First, we compute the Minkowski bound My = @ < 4. Therefore, each
ideal class is represented by an integral ideal of norm < 3.

Next, we compute the factorization of the ideals (2) and (3). Since O = Z[w], where
w = %‘TS satisfies w? — w + 6 = 0. Both in (Z/2Z)[x] and in (Z/3Z)[z] we have
2> —x+6 =z(x — 1), so (2) = p1p2 and (3) = qi1q2, where p; # po and q; # qo. Here
P = (2,w), p2 = (2,), q1 = (3,w), g2 = (3,w’). Therefore, each ideal is equivalent to
one of O, p1,p2, q1, qa.

It remains to figure out the equivalences between the above five ideals. First, py ~ p;*
and gz ~ q; . Next, we compute p;q; = (6, 2w, 3w, w — 6) = (6,w) = (w) since w divides
its norm 6. Similarly, pogs = (w'). Thus gq; ~ ps and gy ~ p;. Therefore, to finish the



proof it is enough to check that p; 7 py (this automatically implies p; % O because of
pa~ P ).

If we had p; ~ po, then p? would be principal. However, if (a+ bw) is a principal ideal
of norm 4, then a® 4+ ab + 6b*> = 4, and this easily implies (a,b) = (£+2,0). Therefore, if
p? where principal, we would have p? = (2), which contradicts the fact that p; # po.

Therefore, there are three classes of ideals in Og: O, pi, and po, and since there is
only one group of order 3, the class group is isomorphic to Z/3Z.

Exercise 4. Let K = Q(V/7).
(a) Show that Ox = Z[V/7];

(b) Show that the class number of K is equal to 3.

Solution. The discriminant of 23 — 7 is —3% - 72, Therefore, the index [Of: Z[V/7]]
divides 21. ,

If 7|[Ok : Z[v/7]], then there is an element a = w € Og ~ Z[/T]. Since
Tr(a) = 37“ € Z, we have 7|a, and thus without loss of generality we may assume that
a = 0. Then we compute the norm N(av/7) = § + 3. Since this also has to be an
integer, we must have 7|b, so again we may assume b = 0. But then N(a) = ¢*/7, so that
7|c, and we conclude that a € Z[¥/7], a contradiction.

Next, assume that 3|[Ox : Z[v/7]]. Then there exists a = w € Ok N Z[V7).
We have

a® + 7b% + 49¢® — 21abe

N(a) =
(@) o
From this we see that 3|a® + b + ¢, or equivalently, since 3> = ¢ (mod 3), we see that
3la+ b+ ¢. Thus we may assume ¢ = —a — b. Then
203 + 14 b)3
N(a) = 20+ 14atb)"

9

Since t* = 0, 1 (mod 9), and 2 # 0, +14 (mod 9), we must have a® = (a+b)? = 0 (mod 9).
But then 3|a, b, c, and we get a contradiction to a ¢ Z[v/7]. Therefore, Ox = Z[v/7].

Denote 0 = /7.

Next, we compute the Minkowski bound: Mg = % < 11. Therefore, each ideal is
equivalent to an integral ideal of norm < 10. Since (7) = ()3, the generators of the ideal
class group are among the prime ideals dividing (2), (3), and (5).

We have the following factorizations of z* — 7: 2® — 7 = (z + 1)(2® + = + 1) modulo
2, 28 — 7 = (x + 2)® modulo 3, and 2* — 7 = (z + 2)(2* + 3z — 1) modulo 5. Therefore,
the class group is generated by p,q,t, where p = (2,0 — 1), q = (3,0 +2) = (3,0 — 1),
and t = (5,0 + 2), of norms 2, 3, and 5 respectively, and moreover > = (3) is principal.

We calculate

pg=(2,0—-1)(3,0 —1)= (6,20 —1),3(0 —1),(0 —1)*) = (6,0 —1) = (6 — 1),
where (6 — 1)|6 since N(6 — 1) = 6. Similarly,
qr= (3,0 4+2)(5,0 +2) = (15,5(0 +2),3(0 +2), (0 +2)*) = (15,0 +2) = (0 + 2),

where (6 4 2)|15 since N(6 + 2) = 15.



Therefore, the ideal class group is generated by g, which is of order dividing 3. To see
that q is not principal, note that its norm is 3, and if ¢ = (a + b0 + c6?), then we would
have

a® 4+ 7% + 49¢* — 21abe = 3

which implies a® = 3 (mod 7), but 3 is not a cube modulo 7. Therefore, q is not principal,
and thus the class number is equal to 3.

Exercise 5. Let K = Q(v/2,vV/3). Show that a = (1 + v/2)/+/3 is a unit in Ok.

Solution. First, we calculate

1+ 923 343924392 t
O(3:(+3\/_) _ +\/_3+\/_ 4V YT =5,

We have (8 —1)% = 2(1 + v/2)? = 63, therefore 8% — 38> — 38 — 1 = 0. From this we
conclude that
a?—=3a°=3a*—-1 = 0.

But this implies that o € O and that Ng/g(a) = 1, hence o is a unit.

Exercise 6. Let p =1 (mod 4) be a prime number, and consider the element £ € Q(,)
defined by

1

€ = (1 - g;)(%)7

1

bS]
|

)
Il

where (5) denotes the Legendre symbol.
(a) Show that € is a unit;
(b) Show that ¢ belongs to the quadratic subfield Q(,/p) in Q((p);

(c) Compute ¢ for p = 5.

Solution. Let us denote ¢ = (.
(a) As we have already seen in Exercise 10.2(b), for any 1 < a < p — 1, the number

€q = % is a unit. Therefore,
IO =0
p— a = a
e = (1 —C)Zazl(E)HEa” - Hsap ;
a=1 a=1
since Z;i(%) = 0 (as there are equal numbers of residues and non-residues modulo p).

Therefore, ¢ is a unit.
(b) Let o € Gal(K/Q) be given by ¢ + ¢*. Then we compute

p—1 p—1

o av )\ ()
= [Io-gn® = (Tla-gn®)" = <.
a=1 a=1
Therefore, € + 71 is fixed by the Galois group of K, hence ¢ + e7! € Q (and in fact
in Z). This means that ¢ lies in a quadratic subfield of K. However, since the Galois
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group is cyclic, there is only one quadratic subfield, and by Exercise 2.4 the Gauss sum

7(1) = £,/p lies in Q(¢), so we must have ¢ € Q(/p).
(¢) We compute

_1-QU-¢) @y
(1—=¢)(1—-¢%) 5
Then e ' =(+¢*+2 and wefind e + e ' =3, ore2 —3¢+1 = 0. From this we find

3++5

-T2

=+ +2.

Note that this is in fact a fundamental unit in Q(v/5).

Exercise 7. Let K/Q be a Galois extension such that a prime number p is inert in K
(i.e. (p) is a prime ideal). Show that Gal(K/Q) is a cyclic group.

(Hint: recall the decomposition and the inertia subgroups, and the fact that the Galois
groups of any finite extensions of a finite field is cyclic.)

Solution. Let us write p for the prime ideal in Z, and p for the prime ideal pOp in Oy,
and let k, := Z/pZ and k, := O /pOy, denote the corresponding residue fields. Finally,
let

D(p/p) = {o € Gal(K/Q): o(p) = p}

and
I(p/p) ={o € D(p/p): o(a) = a (mod p), for all « € O}

be the decomposition and inertia subgroups. From Galois theory we know that
D(p/p)/1(p/p) is canonically isomorphic to Gal(k,/k,).

By our assumption D(p/p) is the whole Galois group, and since p is unramified, the
inertia group is trivial (since e = 1 and f = n where n is the degree of the extension).
Therefore, Gal(K/Q) is isomorphic to Gal(k,/k,). Since the latter is a Galois group of a
finite extension of a finite field, it is cyclic (generated by the Frobenius automorphism),
and hence Gal(K/Q) is also cyclic.

Exercise 8. Prove that for any n > 1 there are infinitely many prime numbers congruent
to 1 modulo n.

(Hint: Assuming that there are only finitely many, let P denote their product. Obtain
contradiction by considering a prime p dividing @, (knP) for some k € Z, where ®,, is
the n-th cyclotomic polynomial.)

Solution. As in the hint, let ®,(z) be the n-th cyclotomic polynomial, i.e., ®,(x) =
[I¢(z =€), where the product runs over all primitive n-th roots of unity. For n > 2 we
have ®,(0) = 1, and therefore for any k € Z we have ®,,(knP) = 1 (mod nP). This is so
because more generally (a — b)|(Q(a) — Q(b)) for any @ € Z|x].

Since a non-constant polynomial has only finitely many roots, there exists k € Z such
that @, (knP) # 1. Let p be any prime that divides ®,,(knP). By above, we have p { nP.

The number ¢t = knP is an n-th root of unity in Z/pZ, since ®,,(t) = 0 (mod p) and
®,, (z)|x™ — 1. Assume that ¢ is a primitive [-th root of unity in Z/pZ, where n = Im and
m > 1. Then @,(t)|5= =1+t + - + ¢V =m (mod p). However, by assumption
p|®,(t), a contradiction since m # 0 (mod p). Therefore, ¢ is a primitive n-th root of
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unity in Z/pZ, and by Lagrange’s theorem n|(p — 1) since p — 1 is the order of (Z/pZ)*.
Since p 1 P this contradicts the assumption that P is the product of all primes congruent
to 1 modulo n.

Alternatively, we can derive a contradiction as follows. Since p| Hg(t — (), one of the
ideals (¢ — ) is divisible by some prime p above p. By Galois symmetry we get that each
(t — C) is divisible by some prime p above p. However, the ideals (¢t — ;) and (t — (,) are
coprime, since they both have norm ®,,(¢) = 1 (mod n) and their sum contains ¢; — (s
which has norm dividing some power of n. This implies that p is divisible by ¢(n) distinct
prime ideals (one for each factor ¢ — (). Since the cyclotomic field Q(¢,) has degree ¢(n),
this implies that p splits completely in Q((,), and we know from lectures that p splits
completely if and only if p = 1 (mod n).



