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Solutions to Ferienserie

Exercise 1. Let K be a quadratic extension of Q and let D be its discriminant. Show

that OK = Z[αD], where αD = D+
√
D

2
.

Solution. Since Tr(αD) = D and N(αD) = D+
√
D

2
· D−

√
D

2
= D(D−1)

4
, we see that

α2
D −DαD +

D(D − 1)

4
= 0 .

Since D is the discriminant of a number field, we have D ≡ 0, 1 (mod 4), so that αD is

an algebraic integer. Finally, the discriminant of {1, αD} is equal to D2 − 4D(D−1)
4

= D.
Since D is the discriminant of K, we conclude that OK = Z[αD].

Exercise 2. Show that Z[
√

2] is a principal ideal domain, and using this show that

±p = x2 − 2y2 ⇔ p ≡ 1, 7 (mod 8)

(here p is a prime and ±p = x2−2y2 means that either p or −p can be written as x2−2y2).

Solution. The Minkowski bound for K = Q(
√

2) is
√

2 < 2, so Z[
√

2] = OK is a PID.
First, if ±p = x2 − 2y2, then reducing this identity modulo p we get that 2 is a

quadratic residue modulo p (note that x, y 6≡ 0 (mod p)), and by the supplementary
quadratic reciprocity law we have p ≡ 1, 7 (mod 8).

In the other direction, let p ≡ 1, 7 (mod 8). Then 2 is a quadratic residue modulo p,
so x2−2 factors as (x−a)(x+a) in Z/pZ. By Kummer’s factorization theorem (p) = p1p2
and moreover N(p1) = N(p2) = p since the extension is quadratic. Since Z[

√
2] is a PID,

we have p1 = (x+ y
√

2) and thus N(x+ y
√

2) = ±p, so that ±p = x2 − 2y2, as claimed.

Exercise 3. Show that the class group of K = Q(
√
−23) is isomorphic to Z/3Z and find

the representative ideals.

Solution. First, we compute the Minkowski bound MK = 2
√
23
π

< 4. Therefore, each
ideal class is represented by an integral ideal of norm ≤ 3.

Next, we compute the factorization of the ideals (2) and (3). Since OK = Z[ω], where

ω = 1+
√
−23
2

satisfies ω2 − ω + 6 = 0. Both in (Z/2Z)[x] and in (Z/3Z)[x] we have
x2 − x + 6 = x(x − 1), so (2) = p1p2 and (3) = q1q2, where p1 6= p2 and q1 6= q2. Here
p1 = (2, ω), p2 = (2, ω′), q1 = (3, ω), q2 = (3, ω′). Therefore, each ideal is equivalent to
one of O, p1, p2, q1, q2.

It remains to figure out the equivalences between the above five ideals. First, p2 ∼ p−11

and q2 ∼ q−11 . Next, we compute p1q1 = (6, 2ω, 3ω, ω − 6) = (6, ω) = (ω) since ω divides
its norm 6. Similarly, p2q2 = (ω′). Thus q1 ∼ p2 and q2 ∼ p1. Therefore, to finish the
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proof it is enough to check that p1 6∼ p2 (this automatically implies pi 6∼ O because of
p2 ∼ p−11 ).

If we had p1 ∼ p2, then p21 would be principal. However, if (a+ bω) is a principal ideal
of norm 4, then a2 + ab + 6b2 = 4, and this easily implies (a, b) = (±2, 0). Therefore, if
p21 where principal, we would have p21 = (2), which contradicts the fact that p1 6= p2.

Therefore, there are three classes of ideals in OK : O, p1, and p2, and since there is
only one group of order 3, the class group is isomorphic to Z/3Z.

Exercise 4. Let K = Q( 3
√

7).

(a) Show that OK = Z[ 3
√

7];

(b) Show that the class number of K is equal to 3.

Solution. The discriminant of x3 − 7 is −33 · 72. Therefore, the index [OK : Z[ 3
√

7]]
divides 21.

If 7|[OK : Z[ 3
√

7]], then there is an element α = a+b 3√7+c 3√72

7
∈ OK r Z[ 3

√
7]. Since

Tr(α) = 3a
7
∈ Z, we have 7|a, and thus without loss of generality we may assume that

a = 0. Then we compute the norm N(α 3
√

7) = b3

7
+ c3. Since this also has to be an

integer, we must have 7|b, so again we may assume b = 0. But then N(α) = c3/7, so that
7|c, and we conclude that α ∈ Z[ 3

√
7], a contradiction.

Next, assume that 3|[OK : Z[ 3
√

7]]. Then there exists α = a+b 3√7+c 3√72

3
∈ OK r Z[ 3

√
7].

We have

N(α) =
a3 + 7b3 + 49c3 − 21abc

27
.

From this we see that 3|a3 + b3 + c3, or equivalently, since t3 ≡ t (mod 3), we see that
3|a+ b+ c. Thus we may assume c = −a− b. Then

N(α) = −2a3 + 14(a+ b)3

9
.

Since t3 ≡ 0,±1 (mod 9), and 2 6≡ 0,±14 (mod 9), we must have a3 ≡ (a+b)3 ≡ 0 (mod 9).
But then 3|a, b, c, and we get a contradiction to α 6∈ Z[ 3

√
7]. Therefore, OK = Z[ 3

√
7].

Denote θ = 3
√

7.
Next, we compute the Minkowski bound: MK = 56

3
√
3π
< 11. Therefore, each ideal is

equivalent to an integral ideal of norm ≤ 10. Since (7) = (θ)3, the generators of the ideal
class group are among the prime ideals dividing (2), (3), and (5).

We have the following factorizations of x3 − 7: x3 − 7 = (x + 1)(x2 + x + 1) modulo
2, x3 − 7 = (x + 2)3 modulo 3, and x3 − 7 = (x + 2)(x2 + 3x− 1) modulo 5. Therefore,
the class group is generated by p, q, r, where p = (2, θ − 1), q = (3, θ + 2) = (3, θ − 1),
and r = (5, θ + 2), of norms 2, 3, and 5 respectively, and moreover q3 = (3) is principal.

We calculate

pq = (2, θ − 1)(3, θ − 1) = (6, 2(θ − 1), 3(θ − 1), (θ − 1)2) = (6, θ − 1) = (θ − 1) ,

where (θ − 1)|6 since N(θ − 1) = 6. Similarly,

qr = (3, θ + 2)(5, θ + 2) = (15, 5(θ + 2), 3(θ + 2), (θ + 2)2) = (15, θ + 2) = (θ + 2) ,

where (θ + 2)|15 since N(θ + 2) = 15.
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Therefore, the ideal class group is generated by q, which is of order dividing 3. To see
that q is not principal, note that its norm is 3, and if q = (a+ bθ + cθ2), then we would
have

a3 + 7b3 + 49c3 − 21abc = 3

which implies a3 ≡ 3 (mod 7), but 3 is not a cube modulo 7. Therefore, q is not principal,
and thus the class number is equal to 3.

Exercise 5. Let K = Q( 3
√

2, 3
√

3). Show that α = (1 + 3
√

2)/ 3
√

3 is a unit in OK .

Solution. First, we calculate

α3 =
(1 + 3

√
2)3

3
=

3 + 3 3
√

2 + 3 3
√

2
2

3
= 1 +

3
√

2 +
3
√

2
2

= β .

We have (β − 1)3 = 2(1 + 3
√

2)3 = 6β, therefore β3 − 3β2 − 3β − 1 = 0. From this we
conclude that

α9 − 3α6 − 3α3 − 1 = 0 .

But this implies that α ∈ OK and that NK/Q(α) = 1, hence α is a unit.

Exercise 6. Let p ≡ 1 (mod 4) be a prime number, and consider the element ε ∈ Q(ζp)
defined by

ε =

p−1∏
a=1

(1− ζap )(
a
p
),

where ( ·
p
) denotes the Legendre symbol.

(a) Show that ε is a unit;

(b) Show that ε belongs to the quadratic subfield Q(
√
p) in Q(ζp);

(c) Compute ε for p = 5.

Solution. Let us denote ζ = ζp.
(a) As we have already seen in Exercise 10.2(b), for any 1 ≤ a ≤ p − 1, the number

εa = 1−ζa
1−ζ is a unit. Therefore,

ε = (1− ζ)
∑p−1

a=1(
a
p
)
p−1∏
a=1

ε
(a
p
)

a =

p−1∏
a=1

ε
(a
p
)

a ,

since
∑p−1

a=1(
a
p
) = 0 (as there are equal numbers of residues and non-residues modulo p).

Therefore, ε is a unit.
(b) Let σ ∈ Gal(K/Q) be given by ζ 7→ ζb. Then we compute

εσ =

p−1∏
a=1

(1− ζabp )(
a
p
) =

( p−1∏
a=1

(1− ζabp )(
ab
p
)
)( b

p
)

= ε(
b
p
) .

Therefore, ε + ε−1 is fixed by the Galois group of K, hence ε + ε−1 ∈ Q (and in fact
in Z). This means that ε lies in a quadratic subfield of K. However, since the Galois
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group is cyclic, there is only one quadratic subfield, and by Exercise 2.4 the Gauss sum
τ(1) = ±√p lies in Q(ζ), so we must have ε ∈ Q(

√
p).

(c) We compute

ε =
(1− ζ)(1− ζ4)
(1− ζ2)(1− ζ3)

=
(2− ζ − ζ−1)2

5
= ζ3 + ζ2 + 2 .

Then ε−1 = ζ + ζ4 + 2, and we find ε+ ε−1 = 3, or ε2 − 3ε+ 1 = 0. From this we find

ε =
3±
√

5

2
.

Note that this is in fact a fundamental unit in Q(
√

5).

Exercise 7. Let K/Q be a Galois extension such that a prime number p is inert in K
(i.e. (p) is a prime ideal). Show that Gal(K/Q) is a cyclic group.

(Hint: recall the decomposition and the inertia subgroups, and the fact that the Galois
groups of any finite extensions of a finite field is cyclic.)

Solution. Let us write p for the prime ideal in Z, and p for the prime ideal pOL in OL,
and let kp := Z/pZ and kp := OL/pOL denote the corresponding residue fields. Finally,
let

D(p/p) = {σ ∈ Gal(K/Q) : σ(p) = p}

and
I(p/p) = {σ ∈ D(p/p) : σ(α) ≡ α (mod p) , for all α ∈ OL}

be the decomposition and inertia subgroups. From Galois theory we know that
D(p/p)/I(p/p) is canonically isomorphic to Gal(kp/kp).

By our assumption D(p/p) is the whole Galois group, and since p is unramified, the
inertia group is trivial (since e = 1 and f = n where n is the degree of the extension).
Therefore, Gal(K/Q) is isomorphic to Gal(kp/kp). Since the latter is a Galois group of a
finite extension of a finite field, it is cyclic (generated by the Frobenius automorphism),
and hence Gal(K/Q) is also cyclic.

Exercise 8. Prove that for any n > 1 there are infinitely many prime numbers congruent
to 1 modulo n.

(Hint: Assuming that there are only finitely many, let P denote their product. Obtain
contradiction by considering a prime p dividing Φn(knP ) for some k ∈ Z, where Φn is
the n-th cyclotomic polynomial.)

Solution. As in the hint, let Φn(x) be the n-th cyclotomic polynomial, i.e., Φn(x) =∏
ζ(x − ζ), where the product runs over all primitive n-th roots of unity. For n > 2 we

have Φn(0) = 1, and therefore for any k ∈ Z we have Φn(knP ) ≡ 1 (mod nP ). This is so
because more generally (a− b)|(Q(a)−Q(b)) for any Q ∈ Z[x].

Since a non-constant polynomial has only finitely many roots, there exists k ∈ Z such
that Φn(knP ) 6= 1. Let p be any prime that divides Φn(knP ). By above, we have p - nP .

The number t = knP is an n-th root of unity in Z/pZ, since Φn(t) ≡ 0 (mod p) and
Φn(x)|xn− 1. Assume that t is a primitive l-th root of unity in Z/pZ, where n = lm and
m > 1. Then Φn(t)| tn−1

tl−1 = 1 + tl + · · · + t(m−1)l ≡ m (mod p). However, by assumption
p|Φn(t), a contradiction since m 6≡ 0 (mod p). Therefore, t is a primitive n-th root of
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unity in Z/pZ, and by Lagrange’s theorem n|(p− 1) since p− 1 is the order of (Z/pZ)×.
Since p - P this contradicts the assumption that P is the product of all primes congruent
to 1 modulo n.

Alternatively, we can derive a contradiction as follows. Since p|
∏

ζ(t− ζ), one of the
ideals (t− ζ) is divisible by some prime p above p. By Galois symmetry we get that each
(t− ζ) is divisible by some prime p above p. However, the ideals (t− ζ1) and (t− ζ2) are
coprime, since they both have norm Φn(t) ≡ 1 (mod n) and their sum contains ζ1 − ζ2
which has norm dividing some power of n. This implies that p is divisible by ϕ(n) distinct
prime ideals (one for each factor t− ζ). Since the cyclotomic field Q(ζn) has degree ϕ(n),
this implies that p splits completely in Q(ζn), and we know from lectures that p splits
completely if and only if p ≡ 1 (mod n).
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