D-MATH HS 2019 Prof. E. Kowalski

Exercise Sheet 10

Commutative Algebra

Let $A \neq 0$ be a commutative ring.

(1) Assume that A is noetherian and let \mathfrak{p} be a prime ideal of A; let $S \subseteq \operatorname{Spec} A$ be a finite set of prime ideals such that for all $\mathfrak{p}' \in S$, $\mathfrak{p}' \not\supseteq \mathfrak{p}$. Show that if there exists a chain of primes

$$\mathfrak{p}_0\subset\mathfrak{p}_1\subset\cdots\subset\mathfrak{p}_{d-1}\subset\mathfrak{p},$$

then there exists such a chain with \mathfrak{p}_1 not contained in any ideal in S. Hint: start with the case d = 2.

(2) Assume that A is noetherian and let \mathfrak{a} be an ideal of A, $\mathfrak{a} = (a_1, \ldots, a_n)$. Then for every prime ideal $\mathfrak{p} \supseteq \mathfrak{a}$ one has

$$\operatorname{ht}(\mathfrak{p}/\mathfrak{a}) \leq \operatorname{ht}(\mathfrak{p}) \leq \operatorname{ht}(\mathfrak{p}/\mathfrak{a}) + n.$$

(3) Let A be a noetherian and local ring with maximal ideal \mathfrak{m} and residue field $k = A/\mathfrak{m}$. By Nakayama's Lemma, every minimal set of generators of \mathfrak{m} has the same order, say $\mu(\mathfrak{m})$, which is equal to $\dim_k(\mathfrak{m}/\mathfrak{m}^2)$. On the other hand, by the Hauptidealsatz, $\operatorname{ht}(\mathfrak{m}) \leq \mu(m)$. When the equality holds, A is said to be **regular**, i.e.

$$\dim A = \operatorname{ht}(\mathfrak{m}) = \dim_k(\mathfrak{m}/\mathfrak{m}^2).$$

- a. Assume dim A = 0. Then show that A is regular if and only if A is a field.
- b. Show that if A is regular then A/(a) is regular for all $a \in \mathfrak{m} \mathfrak{m}^2$ and

$$\dim A = \dim(A/(a)) + 1.$$

Hint: use exercise 2.

- c. Show that $A = \mathbb{Q}[X]/(X^2)$ is not regular and that every PID is regular.
- d. Show that if A is regular, then A is an integral domain. *Hint*: proceed by induction on dim A and consider A/(a) with $a \in \mathfrak{m}-\mathfrak{m}^2$. Prove that A_a is UFD using the fact that a noetherian ring is UFD if and only if the primes of height 1 are principal.

e. Let $B = \mathbb{Q}[X,Y]/(f)$, where $f \in \mathbb{Q}[X,Y]$ is irreducible. Let $P = (X-x,Y-y) \subseteq \mathbb{Q}[X,Y]$ with $x, y \in \mathbb{Q}$ such that f(x,y) = 0. Let $A = B_P$; show that A is regular if and only if $(\partial_X f_{|_{(x,y)}}, \partial_Y f_{|_{(x,y)}}) \neq (0,0)$.

(4) Show that $M = \mathbb{Z}[\frac{1}{p}]/\mathbb{Z}$ as \mathbb{Z} -module is artinian but not noetherian.