D-MATH HS 2019 Prof. E. Kowalski

Exercise Sheet 2

Commutative Algebra

Let A be a commutative ring, $I \subseteq A$ an ideal of A and let $S \subseteq A$ be a multiplicative system.

- (1) Show that A is a local ring with maximal ideal I if and only if $A A^{\times} \subseteq I$.
- (2) Consider the projection map $\pi : A \longrightarrow A/I$. Prove that $\tilde{S} := \pi(S)$ is a multiplicative system of A/I and that there is a ring isomorphism

$$S^{-1}A/S^{-1}I \longrightarrow S(A/I)$$
$$[a/s] \longmapsto [a]/[s].$$

- (3) For any prime ideal q containing I, there exists a prime ideal p of A such that I ⊆ p ⊆ q and which is minimal among all prime ideals of A containing I.
- (4) Let \mathfrak{N} be the nilpotent radical of A. Show that the following are equivalent.
 - a. A has exactly one prime ideal;
 - b. every element of A is either a unit or nilpotent;
 - c. A/\mathfrak{N} is a field.
- (5) Suppose that for each prime ideal p of A, the local ring A_p has no nilpotent element ≠ 0. Show that A has no nilpotent element ≠ 0. If A_p is an integral domain for every p, is A necessarily an integral domain?
- (6) Let A be a non-Noetherian ring and let Σ be the set of ideals of A which are not finitely generated. Show that Σ has maximal elements and that the maximal elements of Σ are prime ideals.

Hint: Let \mathfrak{a} be a maximal elements of Σ and suppose that there exist $x, y \in A$ such that $x \notin \mathfrak{a}, y \notin \mathfrak{a}$ and $xy \in A$. Show that there exists a finitely generated ideal $\mathfrak{a}_0 \subseteq \mathfrak{a}$ such that $\mathfrak{a}_0 + (x) = \mathfrak{a} + (x)$, and that $\mathfrak{a} = \mathfrak{a}_0 + x(\mathfrak{a} : x)$. Since $(\mathfrak{a} : x) \supset \mathfrak{a}$, it is finitely generated and therefore so is \mathfrak{a} .

Hence a ring in which every prime ideal is finitely generated is Noetherian.