D-MATH HS 2019 Prof. E. Kowalski

Exercise Sheet 3

Commutative Algebra

1 Let (e_1, e_2) be the canonical basis of \mathbb{R}^2 , and consider the isomorphism of \mathbb{R} -vector spaces

$$\mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^2 \xrightarrow{\cong} \mathbb{R}^4$$

$$e_1 \otimes e_1 \longmapsto f_1$$

$$e_1 \otimes e_2 \longmapsto f_2$$

$$e_2 \otimes e_1 \longmapsto f_3$$

$$e_2 \otimes e_2 \longmapsto f_4.$$

a. Show that $af_1 + bf_2 + cf_3 + df_4 \in \mathbb{R}^4$ is the image of a pure tensor $x \otimes y \in \mathbb{R}^2 \otimes_{\mathbb{R}} \mathbb{R}^2$ if and only if

$$ad = bc$$
.

- b. Compute the matrix $u_1 \otimes u_2$, where $u_1 = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}$ and $u_2 = \begin{pmatrix} -1 & 4 \\ 2 & 3 \end{pmatrix}$.
- 2 Let K be a field and let E, F be finitely generated K-vector spaces. We denote by $E' = \operatorname{Hom}_K(E, K)$ and $F' = \operatorname{Hom}_K(F, K)$ the dual space of E and F, respectively. For $x \in E$, $\lambda \in F'$, let $u_{x,\lambda}$ be the linear map

$$u_{x,\lambda}: F \longrightarrow E$$

 $f \longmapsto \lambda(f)x.$

- a. Show that $\{u_{x,\lambda}\}_{x,\lambda}$ is the set of linear maps from F to E of rank ≤ 1 .
- b. Show that the map

$$F' \times E \longrightarrow \operatorname{Hom}_K(F, E)$$

 $(\lambda, x) \longmapsto u_{x,\lambda}$

induces an isomorphism

$$F' \otimes_K E \cong \operatorname{Hom}_K(F, E)$$
.

- c. If dim F and dim E are ≥ 2 , show that not all the elements of $F' \otimes_K E$ are pure tensors.
- d. Let F = E. Show that there is a unique linear map

$$E' \otimes_K E \longrightarrow K$$

sending $\lambda \otimes x$ in $\lambda(x)$. Using the ismorphism of b., what is the corresponding linear map

$$\operatorname{End}_K(E) \longrightarrow K$$
?

e. Find an isomorphism

$$(E \otimes_K F)' \cong E' \otimes_K F'.$$

(3) Let M, N be two A-modules. Without using the explicit construction, show that $M \otimes_A N$ is generated by the elements $\beta(m, n) = m \otimes n$ for $m \in M$, $n \in N$, where

$$\beta: M \times N \longrightarrow M \otimes_A N.$$

Hint: consider the A-submodule T of $M \otimes_A N$ generated by $(\beta(m,n))_{m,n}$.

(4) Let X_1, X_2 be finite sets, and

$$L(X_i) := \{ f : X_i \longrightarrow \mathbb{C} \text{ functions} \} \quad i = 1, 2$$

as C-vector spaces (with pointwise operations). Show that the map

$$b: L(X_1) \times L(X_2) \longrightarrow L(X_1 \times X_2)$$

given by

$$b(f_1, f_2)(x, y) = f_1(x)f_2(x)$$

induces an isomorphism of \mathbb{C} -vector spaces

$$L(X_1) \otimes_{\mathbb{C}} L(X_2) \longrightarrow L(X_1 \times X_2).$$

- (5) Let A be an integral domain and let M be a torsion A-module, i.e. for all $x \in M$, $0:_A x \neq (0)$. Show that for any A-module N, $M \otimes_A N$ is a torsion A-module.
- (6) Let M, N, P be A-modules.
 - a. Show that there is a unique isomorphism

$$M \otimes_A N \stackrel{\iota}{\longrightarrow} N \otimes_A M$$

such that

$$\iota(m\otimes n)=n\otimes m.$$

b. Show that there is a unique isomorphism

$$M \otimes_A (N \otimes_A P) \xrightarrow{\eta} (M \otimes_A N) \otimes_A P$$

such that

$$\eta(m\otimes(n\otimes p))=(m\otimes n)\otimes p).$$

7 Show that $2 \otimes 1 = 0$ in $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$, but $2 \otimes 1 \neq 0$ in $2\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z}/2\mathbb{Z}$.