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Commutative Algebra

@ If A = {0}, it is trivial. Suppose A # {0} and pick a € A, a # 0.
Consider the morphism of A-modules

Ga: A— A

given by ¢(x) = ax. Then ¢, is injective: if ax = 0, since A is an
integral domain and a # 0, we have x = 0. But A is finite, so ¢, is
also surjective. In particular, 1 = az for some x € A, so0 a is invertible
in A.

(2) a va=y\Va:
(C) true, since for any ideal I, I C V/T;
(D) a e /Va= (a™)" € a for some m,n = a"" €a = a €
Va.
b. vVab=+vanb=yanvb:
Since ab C aNb, one has Vab C vanb. Moreover, if a € \/m,
then a™ € a and a™ € b for some m, which means a € \/a N V/b.

Hence
Vab € vVanb C vanvb.

It remains to show that v/a N v/b C vab: let a € \/aN /b, then
there exist m,n such that a™ € a and a” € b, thus a™*" € ab,

i.e. a € vab.
[This implies, by iteration, that vV IF = VT for all ideals I and
integers k > 0].
c. ya=(1)<=a=(1):
a C v/a, hence if 1 € A, then 1 € y/a. Conversely, 1" =1 € a.
d. if p C A is a prime ideal, then \/p* = p for all integers k > 0:

By b. v/p* = /p. It remains to show that /p C p:
let @ € /b, so a™ € p for some n. If n = 0, we conclude. If

n > 0, assume by induction that (¢! € p = a € p). Then
a™ = aa™"! € p implies, by the primality of p, that either a € p
or a”~! € p. In both cases we can conclude by induction.

@ Write
S
n= pr”
i=1



with p; distinct primes, a; > 1 fori=1,...,s. Note that (p{* ...p%) =
(p1*) ... (pg) as ideals of Z. Moreover, for ¢ # j, (p;*) + (pjj) =7,
then by the Chinese Remainder Theorem, one has

Vi) = o5 8 = 8 )
B w008 2 e 00 Vi)

2 (p)n-n(ps) B

p1)...(ps) = (p1...Dps).
So we can take m as the square-free part of n.

@ a. f is a unit in A[X] if and only if there is a g € A[X], g =
S, biX? such that fg =1in A[X]. Then fg=37 "X =1
with ¢; = > 4 —;arby. For i = 0, we have apbp = 1, which
implies that ag in invertible in A.

For i = m + n we obtain

anbmym = 0.
Multiplying ¢p4+m—1 by a, we have
an(an—1bm + apbp—1) =0 = aibm,l =0.
From this
aicn+m,2 = ai(anfgbm+an,1bm,1+anbm,2) =0= aibm,g =0
and so on. In particular
a?“bo =0,

but by is a unit, so it must be a”*! = 0, which means that a,, is
nilpotent.
Now, consider f — a, X", which coefficients are ao,...,a,_1, and
note that

(1 —apgX™)(1 4 angX"™ + (angX")2 + 4 (apgX™)™)
=1— (a,gX™)™t =1,

so 1 — a,gX™" is invertible; but f is also invertible, hence so is
f—a,X". By repeating the above argument we find that a,_1 is
nilpotent and so on (induction).

b. Ifag,...,a, arenilpotent then f is nilpotent, since f € (ao, ..., a,)A[X]
and the set of nilpotent elements is an ideal.



Conversely, let k > 0 such that f* = 0, then clearly af = 0, so ag
is nilpotent. Let

Jo:=17
fr=fro1 —apa X¥1 for 1<k <n-—1.

Assume by induction that ap is nilpotent for all h < k — 1. Then
frog1=f —ap— a1 X — -+ — ap X" is nilpotent, so there is an £
such that fl$+1 =0, i.e.

X a4+ ap X" = Xl ) =0,

which implies ai =0, i.e. aj nilpotent.

. Let g =" b X" € A[X], g # 0 such that fg =0 in A[X]. We
can assume that by # 0 by observing that Xgf =0 < gf = 0.
Take also g of minimum degree.

In particular a,b,, = 0, and of course (a,g)f = 0. Since deg(a,g) <
m, by assumption a,g = 0. From

fg=a+a1 Xg+--- +an71Xn_lg
=ag+--+ an_lmeniler =0

one has a,_1b,, = 0, and again deg(a,—19) < m, 80 a,—19 = 0.
Proceeding, one obtain a,,_rg = 0 for k =0,...,n. In particular
boakZOfOI‘ kzO,...,n, SO b()f:O.

In general

VO = rS () m=JAX)

P prime M maximal

since every maximal ideal is prime.
Note: if f ¢ m for some m, then

mC (f)+m

and by the maximality of m, (f) + m = (1). In particular there
exist g € A[X], h € m such that

fg+h=1,
so 1 — fg € m is not a unit.
Then, if € J(A[X]) (so f € m for all m), for all g € A[X], 1— fg €
A[X]*. Take g = —X. Thus
1+ fX=14+aX+---€ AX]".

By 4a. the coefficients ag, ..., a, are nilpotent, and so by 4b. f
is nilpotent.



¢ STHA[X]) — (ST A)[X]

i degf
o(245) - L 0w

for Y- a; X' € A[X], s € S. Then ¢ is well-defined, since if 3 a; X*/s =
S b; X/s', there exists s € S such that

n

s”(Z(ais' —¢5)X) =0

1=0

with ¢; = b; if i < m, 0 otherwise (assuming n = deg(d_a; X?) >
deg(>"b; X%) = m). It turns out that

1

s (a;s' —c;8) =0

fori =0,...,n,50a;/s =b;/s'in S™1Aand qS(ZaiXi/s) = (ZbiXi/s’).
It remains to show that ¢ is an homomorphism of rings, injective and
surjective, which is straightforward.

Alternatively, one can use the universal property of the localization.
For the ring homomorphism « : A[X] — (S71A)[X], (> a; X?) =
> a;/sXi there is a unique ¢ such that the following diagram com-

mutes
A[XT/(S%) [X]
S~H(A[X])

where @ is the localization map, a = ¢ o ®. On the other hand,
since STY(A[X]) is a S~!A—algebra, by the universal property of the
polynomial ring, there is a unique morphism

Yo (STIA)X] — STHA[X])

sending 1/1X in X/1. We prove now that 1 is the inverse of ¢. Again,
by the universal property, it is sufficient to show it for the indeterminate
X:

bop(X) = 6(X/1) = ¢ o B(X) = a(X) = X
0 9(X/1) = hodoB(X) = 1o a(X) = ¥(1/1X) = X/1.



@ b. C ring, g, ¢ rings homomorphisms. If fog= fog then g =¢'.

Let f be a monomorphism, and consider C' = ker f, g = ¢ the
inclusion map, ¢’ = 0;
o~ p
ker f A— B

A
0

Then by definition fo:(a) = fo0(a), so by assumption a = 0 for
all a € ker f. The opposite implication follows by the fact that f
injective has a left-inverse.

c. Cring, g, g’ rings homomorphisms. If go f = ¢’ o f then g = ¢'.

As before, if f is surjective, then it has a right-inverse, so by
composing both sides of go f = ¢’ o f with the right-inverse of f
we conclude.

We show now that the inclusion ¢ : Z < Q is an epimorphism:

Claim: "if g = ¢’ on Z, then g = ¢’ on Q".
Let a,b € Z coprime, b # 0. We get

g(a/b) = g(a-1/b) = g(a)g(1/b) = g'(a)g(1/b);



it’s enough to prove the claim for 1/b € Q, b # 0. One has

1= g(b-1/b) = g(b)g(1/b)
and
1=g'(b-1/b) = g(b)g'(1/b)

so g(b) is invertible, and by the unicity of the inverse, g(1/b) =
g'(1/b).

Let M, = X ... X% for a = (aq,...,0,) € N*. For a polynomial
1 n

f € A, denote by supp(f) the set of the monomials in f, that is,
supp(f) = {Ma : a € F}if f =3 cpAaMy (F C N finite set,
Ao € k).

a. If a monomial M is in I, then there is a finite set £/ C F and
polynomials f,, a € E' such that

Write f, = ZﬂeAa )\gMg for some finite set A, C N7, )\g € k for
all a € E', 3 € A,. Hence

M = Z N M.
ack’
BEAa

Since the monomials in A are linearly independent over k, the
monomial M must occur in the RHS, so there are o € E/, B € A,
such that

M = Myip = Mo Msg.

b. Let f € I with I monomial, f = >, . A, M,. Then, using the
same notations of a.,

S ONMy = > MMy

finite acFR’
BEAa

For every +/, the monomial M., must occur in the sum )z AQM(M;,

BEA
since

Ay My =" MiMaypg — > MM,
acl’ £y
BEAq

and M., doesn’t occur in the second sum on the RHS. So every
monomial of f isin I.



Conversely, let f;, ..., f: be a set of generators of the ideal I. Since
foralli=1,...,t, fi € I, by hypothesis supp(f;) C I for all I, so

I = (supp(fi))i=1,..t

is generated by monomials.

. Let I = (My)ack and J = (Mg)gep. Clearly one has

I+ J=((Ma),(Mg))a,s;

1J = (MaMpg)a,s.

Let’s show that I N J is monomial: if f € I N J, then supp(f) C
I'nJ and we conclude by point b.. For monomials M, and Mg let
lem(M,, Mg) = xxenf) - xmax(@nbn) anq ged(My, Mg) =
Ximn(al’ﬁl) . Xﬁlm(a"’ﬁ"). As a set of generators we can take
InJ= (lcm(Ma,Mg))a”g :

(D) holds in general;

(C) by b. it’s enough to prove the inclusion for monomials. Let
M be a monomial, M € I NJ. By a., there are o, 8 such that
MM and Mg|M in A, so by definition lem(Mq, Mg)|M in A.
In general, it’s easy to see that

I:J=(1:M;.
BeEF

We now prove that
I: Mﬁ = (Ma/ng(MaaMﬂ))a

for every . Use then the above to find monomial generators for
1:J.

(D) clear;

(€) if a monomial M isin I : Mg, then M Mg € I, so by a., there
are o € E/, v € N" such that M Mg = M, M,. It holds b; < ~;+a;

for all 7 and
Ma 1

= — M
ged(My, Mg) ’

. " _ ]\/j'yMa : M M 1 . . . .
with M = Tem (M 3] which is in A since max(oy, £;) < vi+

for every i.

VT is monomial: let f € /I, with m such that f™ € I. Then
supp(f™) C I; but for every M, € supp(f), MZJ* € supp(f™),
hence M € I for every M, € supp(f), which means supp(f) C

VI

Define the "radical" of a monomial M, by

VM, = X5 XS,



where

1 ifg;>1
€ =

Then
I'= (\/E)a :

(D) clear since (vVMa)X% € I; (C) M, € VT with M7 e I
Then M} = My = M,y M, for some a € E, ~" € N, Note that
My =/ MqMy—. (a; — €; > 0). Therefore

My _ My My

M, = = VMo
ToMPTt T My "
and AJ\?/(MQI; € Asince for v; > 1, (m — 1)y < 7; T =6
y(m—

Clearly (I : §)S C I. Let J C A be an ideal with JS C I. Tt a € J,
then aS C I, s0 a € (I:S). This means that J C (I :95).



