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~�
��1 If A = {0}, it is trivial. Suppose A 6= {0} and pick a ∈ A, a 6= 0.
Consider the morphism of A-modules

φa : A −→ A

given by φ(x) = ax. Then φa is injective: if ax = 0, since A is an
integral domain and a 6= 0, we have x = 0. But A is �nite, so φa is
also surjective. In particular, 1 = ax for some x ∈ A, so a is invertible
in A.~�
��2 a.

√
a =

√√
a :

(⊆) true, since for any ideal I, I ⊆
√
I;

(⊇) a ∈
√√

a =⇒ (am)n ∈ a for some m,n =⇒ amn ∈ a =⇒ a ∈√
a.

b.
√
ab =

√
a ∩ b =

√
a ∩
√
b :

Since ab ⊆ a∩b, one has
√
ab ⊆

√
a ∩ b. Moreover, if a ∈

√
a ∩ b,

then am ∈ a and am ∈ b for some m, which means a ∈
√
a ∩
√
b.

Hence √
ab ⊆

√
a ∩ b ⊆

√
a ∩
√
b.

It remains to show that
√
a ∩
√
b ⊆
√
ab: let a ∈

√
a ∩
√
b, then

there exist m,n such that am ∈ a and an ∈ b, thus am+n ∈ ab,
i.e. a ∈

√
ab.

[This implies, by iteration, that
√
Ik =

√
I for all ideals I and

integers k > 0].

c.
√
a = (1)⇐⇒ a = (1) :

a ⊆
√
a, hence if 1 ∈ A, then 1 ∈

√
a. Conversely, 1m = 1 ∈ a.

d. if p ⊆ A is a prime ideal, then
√
pk = p for all integers k > 0:

By b.
√
pk =

√
p. It remains to show that

√
p ⊆ p:

let a ∈ √p, so an ∈ p for some n. If n = 0, we conclude. If
n > 0, assume by induction that (an−1 ∈ p =⇒ a ∈ p). Then
an = aan−1 ∈ p implies, by the primality of p, that either a ∈ p
or an−1 ∈ p. In both cases we can conclude by induction.~�
��3 Write

n =

s∏
i=1

pαii
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with pi distinct primes, αi ≥ 1 for i= 1, . . . , s. Note that (pα1
1 . . . pαss ) =

(pα1
1 ) . . . (pαss ) as ideals of Z. Moreover, for i 6= j, (pαii ) + (p

αj
j ) = Z,

then by the Chinese Remainder Theorem, one has√
(n) =

√
(pα1

1 . . . pαss ) =
√

(pα1
1 ) . . . (pαss )

CRT
=
√

(pα1
1 ) ∩ · · · ∩ (pαss )

2b.
=
√

(pα1
1 ) ∩ · · · ∩

√
(pαss )

2d.
= (p1) ∩ · · · ∩ (ps)

CRT
= (p1) . . . (ps) = (p1 . . . ps).

So we can take m as the square-free part of n.~�
��4 a. f is a unit in A[X] if and only if there is a g ∈ A[X], g =∑m
i=0 biX

i such that fg = 1 in A[X]. Then fg =
∑m+n

i=0 ciX
i = 1

with ci =
∑

k+h=i akbh. For i = 0, we have a0b0 = 1, which
implies that a0 in invertible in A.
For i = m+ n we obtain

anbm = 0.

Multiplying cn+m−1 by an we have

an(an−1bm + anbm−1) = 0 =⇒ a2nbm−1 = 0.

From this

a2ncn+m−2 = a2n(an−2bm+an−1bm−1+anbm−2) = 0 =⇒ a3nbm−2 = 0

and so on. In particular

am+1
n b0 = 0,

but b0 is a unit, so it must be am+1
n = 0, which means that an is

nilpotent.
Now, consider f − anXn, which coe�cients are a0, . . . , an−1, and
note that

(1− angXn)(1 + angX
n + (angX

n)2 + · · ·+ (angX
n)m)

= 1− (angX
n)m+1 = 1,

so 1 − angXn is invertible; but f is also invertible, hence so is
f − anXn. By repeating the above argument we �nd that an−1 is
nilpotent and so on (induction).

b. If a0, . . . , an are nilpotent then f is nilpotent, since f ∈ (a0, . . . , an)A[X]
and the set of nilpotent elements is an ideal.
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Conversely, let k > 0 such that fk = 0, then clearly ak0 = 0, so a0
is nilpotent. Let{

f0 := f

fk := fk−1 − ak−1Xk−1 for 1 ≤ k ≤ n− 1.

Assume by induction that ah is nilpotent for all h ≤ k− 1. Then
fk+1 = f − a0 − a1X − · · · − akXk is nilpotent, so there is an `
such that f `k+1 = 0, i.e.

Xk`(ak + · · ·+ anX
n−k)` = Xk`(a`k + . . . ) = 0,

which implies a`k = 0, i.e. ak nilpotent.

c. Let g =
∑m

i=0 biX
i ∈ A[X], g 6= 0 such that fg = 0 in A[X]. We

can assume that b0 6= 0 by observing that Xgf = 0 ⇔ gf = 0.
Take also g of minimum degree.
In particular anbm = 0, and of course (ang)f = 0. Since deg(ang) <
m, by assumption ang = 0. From

fg = a0 + a1Xg + · · ·+ an−1X
n−1g

= a0 + · · ·+ an−1bmX
n−1+m = 0

one has an−1bm = 0, and again deg(an−1g) < m, so an−1g = 0.
Proceeding, one obtain an−kg = 0 for k = 0, . . . , n. In particular
b0ak = 0 for k = 0, . . . , n, so b0f = 0.

In general √
(0) =

⋂
p prime

p ⊆
⋂

m maximal

m = J(A[X])

since every maximal ideal is prime.
Note: if f /∈ m for some m, then

m ⊂ (f) + m

and by the maximality of m, (f) + m = (1). In particular there
exist g ∈ A[X], h ∈ m such that

fg + h = 1,

so 1− fg ∈ m is not a unit.

Then, if ∈ J(A[X]) (so f ∈ m for all m), for all g ∈ A[X], 1−fg ∈
A[X]×. Take g = −X. Thus

1 + fX = 1 + a0X + · · · ∈ A[X]×.

By 4a. the coe�cients a0, . . . , an are nilpotent, and so by 4b. f
is nilpotent.
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~�
��5 De�ne

φ : S−1(A[X]) −→ (S−1A)[X]

by

φ
(∑ aiX

i

s

)
=

deg f∑
i=0

ai
s
Xi

for
∑
aiX

i ∈ A[X], s ∈ S. Then φ is well-de�ned, since if
∑
aiX

i/s =∑
biX

i/s′, there exists s
′′ ∈ S such that

s′′(
n∑
i=0

(ais
′ − cis)Xi) = 0

with ci = bi if i ≤ m, 0 otherwise (assuming n = deg(
∑
aiX

i) ≥
deg(

∑
biX

i) = m). It turns out that

s
′′
(ais

′ − cis) = 0

for i = 0, . . . , n, so ai/s = bi/s
′ in S−1A and φ

(∑
aiX

i/s
)

=
(∑

biX
i/s′
)
.

It remains to show that φ is an homomorphism of rings, injective and
surjective, which is straightforward.
Alternatively, one can use the universal property of the localization.
For the ring homomorphism α : A[X] −→ (S−1A)[X], α(

∑
aiX

i) =∑
ai/sXi there is a unique φ such that the following diagram com-

mutes

A[X] (S−1A)[X]

S−1(A[X])

α

Φ φ

where Φ is the localization map, α = φ ◦ Φ. On the other hand,
since S−1(A[X]) is a S−1A−algebra, by the universal property of the
polynomial ring, there is a unique morphism

ψ : (S−1A)[X] −→ S−1(A[X])

sending 1/1X in X/1. We prove now that ψ is the inverse of φ. Again,
by the universal property, it is su�cient to show it for the indeterminate
X:

φ ◦ ψ(X) = φ(X/1) = φ ◦ Φ(X) = α(X) = X

ψ ◦ φ(X/1) = ψ ◦ φ ◦ Φ(X) = ψ ◦ α(X) = ψ(1/1X) = X/1.
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~�
��6 b. C ring, g, g′ rings homomorphisms. If f ◦ g = f ◦ g′ then g = g′.

C A B

g

g′

f ◦ g

f ◦ g′

f

Let f be a monomorphism, and consider C = ker f , g = ι the
inclusion map, g′ = 0;

ker f A B

ι

0

f

Then by de�nition f ◦ ι(a) = f ◦ 0(a), so by assumption a = 0 for
all a ∈ ker f . The opposite implication follows by the fact that f
injective has a left-inverse.

c. C ring, g, g′ rings homomorphisms. If g ◦ f = g′ ◦ f then g = g′.

A B C

g

g′

g ◦ f

g′ ◦ f

f

As before, if f is surjective, then it has a right-inverse, so by
composing both sides of g ◦ f = g′ ◦ f with the right-inverse of f
we conclude.
We show now that the inclusion ι : Z ↪→ Q is an epimorphism:

Z Q C

g

g′

g ◦ ι

g′ ◦ ι

ι

Claim: "if g = g′ on Z, then g = g′ on Q".
Let a, b ∈ Z coprime, b 6= 0. We get

g(a/b) = g(a · 1/b) = g(a)g(1/b) = g′(a)g(1/b);
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it's enough to prove the claim for 1/b ∈ Q, b 6= 0. One has

1 = g(b · 1/b) = g(b)g(1/b)

and
1 = g′(b · 1/b) = g(b)g′(1/b)

so g(b) is invertible, and by the unicity of the inverse, g(1/b) =
g′(1/b).~�
��7 Let Mα = Xα1

1 . . . Xαn
n for α = (α1, . . . , αn) ∈ Nn. For a polynomial

f ∈ A, denote by supp(f) the set of the monomials in f , that is,
supp(f) = {Mα : α ∈ F} if f =

∑
α∈F λαMα (F ⊆ Nn �nite set,

λα ∈ k).

a. If a monomial M is in I, then there is a �nite set E′ ⊆ E and
polynomials fα, α ∈ E′ such that

M =
∑
α∈E′

fαMα.

Write fα =
∑

β∈Aα λ
β
αMβ for some �nite set Aα ⊆ Nn, λβα ∈ k for

all α ∈ E′, β ∈ Aα. Hence

M =
∑
α∈E′
β∈Aα

λβαMα+β.

Since the monomials in A are linearly independent over k, the
monomialM must occur in the RHS, so there are α ∈ E′, β ∈ Aα
such that

M = Mα+β = MαMβ.

b. Let f ∈ I with I monomial, f =
∑

�nite
λγMγ . Then, using the

same notations of a.,∑
�nite

λγMγ =
∑
α∈E′
β∈Aα

λβαMα+β.

For every γ′, the monomialMγ′ must occur in the sum
∑

α∈E′
β∈Aα

λβαMα+β ,

since
λγ′Mγ′ =

∑
α∈E′
β∈Aα

λβαMα+β −
∑
γ 6=γ′

λγMγ

and Mγ′ doesn't occur in the second sum on the RHS. So every
monomial of f is in I.
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Conversely, let fi, . . . , ft be a set of generators of the ideal I. Since
for all i = 1, . . . , t, fi ∈ I, by hypothesis supp(fi) ⊆ I for all I, so

I = (supp(fi))i=1,...,t

is generated by monomials.

c. Let I = (Mα)α∈E and J = (Mβ)β∈F . Clearly one has
I + J = ((Mα), (Mβ))α,β ;
IJ = (MαMβ)α,β .
Let's show that I ∩ J is monomial: if f ∈ I ∩ J , then supp(f) ⊆
I∩J and we conclude by point b.. For monomialsMα andMβ let

lcm(Mα,Mβ) = X
max(α1,β1)
1 . . . X

max(αn,βn)
n and gcd(Mα,Mβ) =

X
min(α1,β1)
1 . . . X

min(αn,βn)
n . As a set of generators we can take

I ∩ J = (lcm(Mα,Mβ))α,β :

(⊇) holds in general;
(⊆) by b. it's enough to prove the inclusion for monomials. Let
M be a monomial, M ∈ I ∩ J . By a., there are α, β such that
Mα|M and Mβ|M in A, so by de�nition lcm(Mα,Mβ)|M in A.
In general, it's easy to see that

I : J =
⋂
β∈F

I : Mβ.

We now prove that

I : Mβ = (Mα/gcd(Mα,Mβ))α

for every α. Use then the above to �nd monomial generators for
I : J .
(⊇) clear;
(⊆) if a monomial M is in I : Mβ , then MMβ ∈ I, so by a., there
are α ∈ E, γ ∈ Nn such thatMMβ = MγMα. It holds bi ≤ γi+αi
for all i and

M =
Mα

gcd(Mα,Mβ)
M
′′
,

with M
′′

=
MγMα

lcm(Mα,Mβ)
, which is in A since max(αi, βi) ≤ γi+αi

for every i.√
I is monomial: let f ∈

√
I, with m such that fm ∈ I. Then

supp(fm) ⊆ I; but for every Mα ∈ supp(f), Mm
α ∈ supp(fm),

hence Mm
α ∈ I for every Mα ∈ supp(f), which means supp(f) ⊆√

I.
De�ne the "radical" of a monomial Mα by√

Mα := Xε1
1 . . . Xεn

n ,
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where

εi =

{
1 if αi ≥ 1

0 if αi = 0.

Then
I = (

√
Mα)α :

(⊇) clear since (
√
Mα)

∑
αi ∈ I; (⊆) Mγ ∈

√
I with Mm

γ ∈ I.
Then Mm

γ = Mγm = Mγ′Mα for some α ∈ E, γ′ ∈ Nn. Note that
Mα =

√
MαMα−ε (αi − εi ≥ 0). Therefore

Mγ =
Mm
γ

Mm−1
γ

=
Mγ′Mα−ε
Mγ(m−1)

√
Mα

and
Mγ′Mα−ε
Mγ(m−1)

∈ A since for γi ≥ 1, (m− 1)γi ≤ γ
′
i + αi − εi.~�
��8 Clearly (I : S)S ⊆ I. Let J ⊆ A be an ideal with JS ⊆ I. If a ∈ J ,

then aS ⊆ I, so a ∈ (I : S). This means that J ⊆ (I : S).


