D-MATH HS 2019 Prof. E. Kowalski

Solutions 1

Commutative Algebra

(1) If $A = \{0\}$, it is trivial. Suppose $A \neq \{0\}$ and pick $a \in A$, $a \neq 0$. Consider the morphism of A-modules

$$\phi_a: A \longrightarrow A$$

given by $\phi(x) = ax$. Then ϕ_a is injective: if ax = 0, since A is an integral domain and $a \neq 0$, we have x = 0. But A is finite, so ϕ_a is also surjective. In particular, 1 = ax for some $x \in A$, so a is invertible in A.

(2) a. $\sqrt{\mathfrak{a}} = \sqrt{\sqrt{\mathfrak{a}}}$:

 $\begin{array}{l} (\subseteq) \text{ true, since for any ideal } I, I \subseteq \sqrt{I}; \\ (\supseteq) \ a \in \sqrt{\sqrt{\mathfrak{a}}} \Longrightarrow (a^m)^n \in \mathfrak{a} \text{ for some } m, n \implies a^{mn} \in \mathfrak{a} \Longrightarrow a \in \sqrt{\mathfrak{a}}. \end{array}$

b. $\sqrt{\mathfrak{a}\mathfrak{b}} = \sqrt{\mathfrak{a} \cap \mathfrak{b}} = \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$: Since $\mathfrak{a}\mathfrak{b} \subseteq \mathfrak{a} \cap \mathfrak{b}$, one has $\sqrt{\mathfrak{a}\mathfrak{b}} \subseteq \sqrt{\mathfrak{a} \cap \mathfrak{b}}$. Moreover, if $a \in \sqrt{\mathfrak{a} \cap \mathfrak{b}}$, then $a^m \in \mathfrak{a}$ and $a^m \in \mathfrak{b}$ for some m, which means $a \in \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$. Hence

$$\sqrt{\mathfrak{a}\mathfrak{b}} \subseteq \sqrt{\mathfrak{a}\cap\mathfrak{b}} \subseteq \sqrt{\mathfrak{a}}\cap\sqrt{\mathfrak{b}}.$$

It remains to show that $\sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}} \subseteq \sqrt{\mathfrak{a}\mathfrak{b}}$: let $a \in \sqrt{\mathfrak{a}} \cap \sqrt{\mathfrak{b}}$, then there exist m, n such that $a^m \in \mathfrak{a}$ and $a^n \in \mathfrak{b}$, thus $a^{m+n} \in \mathfrak{a}\mathfrak{b}$, i.e. $a \in \sqrt{\mathfrak{a}\mathfrak{b}}$.

[This implies, by iteration, that $\sqrt{I^k} = \sqrt{I}$ for all ideals I and integers k > 0].

- c. $\sqrt{\mathfrak{a}} = (1) \iff \mathfrak{a} = (1)$: $\mathfrak{a} \subseteq \sqrt{\mathfrak{a}}$, hence if $1 \in A$, then $1 \in \sqrt{\mathfrak{a}}$. Conversely, $1^m = 1 \in \mathfrak{a}$.
- d. if $\mathfrak{p} \subseteq A$ is a prime ideal, then $\sqrt{\mathfrak{p}^k} = \mathfrak{p}$ for all integers k > 0: By b. $\sqrt{\mathfrak{p}^k} = \sqrt{\mathfrak{p}}$. It remains to show that $\sqrt{\mathfrak{p}} \subseteq \mathfrak{p}$: let $a \in \sqrt{\mathfrak{p}}$, so $a^n \in \mathfrak{p}$ for some n. If n = 0, we conclude. If n > 0, assume by induction that $(a^{n-1} \in \mathfrak{p} \Longrightarrow a \in \mathfrak{p})$. Then $a^n = aa^{n-1} \in \mathfrak{p}$ implies, by the primality of \mathfrak{p} , that either $a \in \mathfrak{p}$ or $a^{n-1} \in \mathfrak{p}$. In both cases we can conclude by induction.

3) Write

$$n = \prod_{i=1}^{s} p_i^{\alpha_i}$$

with p_i distinct primes, $\alpha_i \geq 1$ for $i = 1, \ldots, s$. Note that $(p_1^{\alpha_1} \ldots p_s^{\alpha_s}) = (p_1^{\alpha_1}) \ldots (p_s^{\alpha_s})$ as ideals of \mathbb{Z} . Moreover, for $i \neq j$, $(p_i^{\alpha_i}) + (p_j^{\alpha_j}) = \mathbb{Z}$, then by the Chinese Remainder Theorem, one has

$$\sqrt{(n)} = \sqrt{(p_1^{\alpha_1} \dots p_s^{\alpha_s})} = \sqrt{(p_1^{\alpha_1}) \dots (p_s^{\alpha_s})}$$
$$\stackrel{CRT}{=} \sqrt{(p_1^{\alpha_1}) \cap \dots \cap (p_s^{\alpha_s})} \stackrel{2b}{=} \sqrt{(p_1^{\alpha_1})} \cap \dots \cap \sqrt{(p_s^{\alpha_s})}$$
$$\stackrel{2d.}{=} (p_1) \cap \dots \cap (p_s) \stackrel{CRT}{=} (p_1) \dots (p_s) = (p_1 \dots p_s).$$

So we can take m as the square-free part of n.

(4) a. f is a unit in A[X] if and only if there is a $g \in A[X], g = \sum_{i=0}^{m} b_i X^i$ such that fg = 1 in A[X]. Then $fg = \sum_{i=0}^{m+n} c_i X^i = 1$ with $c_i = \sum_{k+h=i} a_k b_h$. For i = 0, we have $a_0 b_0 = 1$, which implies that a_0 in invertible in A. For i = m + n we obtain

$$a_n b_m = 0.$$

Multiplying c_{n+m-1} by a_n we have

$$a_n(a_{n-1}b_m + a_nb_{m-1}) = 0 \Longrightarrow a_n^2b_{m-1} = 0.$$

From this

$$a_n^2 c_{n+m-2} = a_n^2 (a_{n-2}b_m + a_{n-1}b_{m-1} + a_n b_{m-2}) = 0 \Longrightarrow a_n^3 b_{m-2} = 0$$

and so on. In particular

$$a_n^{m+1}b_0 = 0,$$

but b_0 is a unit, so it must be $a_n^{m+1} = 0$, which means that a_n is nilpotent.

Now, consider $f - a_n X^n$, which coefficients are a_0, \ldots, a_{n-1} , and note that

$$(1 - a_n g X^n)(1 + a_n g X^n + (a_n g X^n)^2 + \dots + (a_n g X^n)^m)$$

= 1 - (a_n g X^n)^{m+1} = 1,

so $1 - a_n g X^n$ is invertible; but f is also invertible, hence so is $f - a_n X^n$. By repeating the above argument we find that a_{n-1} is nilpotent and so on (induction).

b. If a_0, \ldots, a_n are nilpotent then f is nilpotent, since $f \in (a_0, \ldots, a_n)A[X]$ and the set of nilpotent elements is an ideal. Conversely, let k > 0 such that $f^k = 0$, then clearly $a_0^k = 0$, so a_0 is nilpotent. Let

$$\begin{cases} f_0 := f \\ f_k := f_{k-1} - a_{k-1} X^{k-1} & \text{for } 1 \le k \le n-1. \end{cases}$$

Assume by induction that a_h is nilpotent for all $h \leq k-1$. Then $f_{k+1} = f - a_0 - a_1 X - \cdots - a_k X^k$ is nilpotent, so there is an ℓ such that $f_{k+1}^{\ell} = 0$, i.e.

$$X^{k\ell}(a_k + \dots + a_n X^{n-k})^{\ell} = X^{k\ell}(a_k^{\ell} + \dots) = 0,$$

which implies $a_k^{\ell} = 0$, i.e. a_k nilpotent.

c. Let $g = \sum_{i=0}^{m} b_i X^i \in A[X]$, $g \neq 0$ such that fg = 0 in A[X]. We can assume that $b_0 \neq 0$ by observing that $Xgf = 0 \Leftrightarrow gf = 0$. Take also g of minimum degree.

In particular $a_n b_m = 0$, and of course $(a_n g)f = 0$. Since $\deg(a_n g) < m$, by assumption $a_n g = 0$. From

$$fg = a_0 + a_1 Xg + \dots + a_{n-1} X^{n-1}g$$

= $a_0 + \dots + a_{n-1} b_m X^{n-1+m} = 0$

one has $a_{n-1}b_m = 0$, and again $\deg(a_{n-1}g) < m$, so $a_{n-1}g = 0$. Proceeding, one obtain $a_{n-k}g = 0$ for $k = 0, \ldots, n$. In particular $b_0a_k = 0$ for $k = 0, \ldots, n$, so $b_0f = 0$.

In general

$$\sqrt{(0)} = \bigcap_{\mathfrak{p} \text{ prime}} \mathfrak{p} \subseteq \bigcap_{\mathfrak{m} \text{ maximal}} \mathfrak{m} = \mathcal{J}(A[X])$$

since every maximal ideal is prime. Note: if $f \notin \mathfrak{m}$ for some \mathfrak{m} , then

$$\mathfrak{m} \subset (f) + \mathfrak{m}$$

and by the maximality of \mathfrak{m} , $(f) + \mathfrak{m} = (1)$. In particular there exist $g \in A[X]$, $h \in \mathfrak{m}$ such that

$$fg + h = 1,$$

so $1 - fg \in \mathfrak{m}$ is not a unit.

Then, if $\in J(A[X])$ (so $f \in \mathfrak{m}$ for all \mathfrak{m}), for all $g \in A[X], 1 - fg \in A[X]^{\times}$. Take g = -X. Thus

$$1 + fX = 1 + a_0X + \dots \in A[X]^{\times}$$

By 4a. the coefficients a_0, \ldots, a_n are nilpotent, and so by 4b. f is nilpotent.

$$\phi: S^{-1}(A[X]) \longrightarrow (S^{-1}A)[X]$$

by

$$\phi\left(\frac{\sum a_i X^i}{s}\right) = \sum_{i=0}^{\deg f} \frac{a_i}{s} X^i$$

for $\sum a_i X^i \in A[X]$, $s \in S$. Then ϕ is well-defined, since if $\sum a_i X^i/s = \sum b_i X^i/s'$, there exists $s'' \in S$ such that

$$s''(\sum_{i=0}^{n} (a_i s' - c_i s) X^i) = 0$$

with $c_i = b_i$ if $i \leq m$, 0 otherwise (assuming $n = \deg(\sum a_i X^i) \geq \deg(\sum b_i X^i) = m$). It turns out that

$$s^{''}(a_is'-c_is)=0$$

for i = 0, ..., n, so $a_i/s = b_i/s'$ in $S^{-1}A$ and $\phi\left(\sum a_i X^i/s\right) = \left(\sum b_i X^i/s'\right)$. It remains to show that ϕ is an homomorphism of rings, injective and surjective, which is straightforward.

Alternatively, one can use the universal property of the localization. For the ring homomorphism $\alpha : A[X] \longrightarrow (S^{-1}A)[X]$, $\alpha(\sum a_i X^i) = \sum a_i/sX_i$ there is a unique ϕ such that the following diagram commutes

where Φ is the localization map, $\alpha = \phi \circ \Phi$. On the other hand, since $S^{-1}(A[X])$ is a $S^{-1}A$ -algebra, by the universal property of the polynomial ring, there is a unique morphism

 $\psi: (S^{-1}A)[X] \longrightarrow S^{-1}(A[X])$

sending 1/1X in X/1. We prove now that ψ is the inverse of ϕ . Again, by the universal property, it is sufficient to show it for the indeterminate X:

$$\phi \circ \psi(X) = \phi(X/1) = \phi \circ \Phi(X) = \alpha(X) = X$$
$$\psi \circ \phi(X/1) = \psi \circ \phi \circ \Phi(X) = \psi \circ \alpha(X) = \psi(1/1X) = X/1.$$

4

b. C ring, g, g' rings homomorphisms. If $f \circ g = f \circ g'$ then g = g'.

(6)

5

Let f be a monomorphism, and consider $C = \ker f$, $g = \iota$ the inclusion map, g' = 0;

Then by definition $f \circ \iota(a) = f \circ 0(a)$, so by assumption a = 0 for all $a \in \ker f$. The opposite implication follows by the fact that f injective has a left-inverse.

c. C ring, g, g' rings homomorphisms. If $g \circ f = g' \circ f$ then g = g'.

As before, if f is surjective, then it has a right-inverse, so by composing both sides of $g \circ f = g' \circ f$ with the right-inverse of f we conclude.

We show now that the inclusion $\iota : \mathbb{Z} \hookrightarrow \mathbb{Q}$ is an epimorphism:

Claim: "if g = g' on \mathbb{Z} , then g = g' on \mathbb{Q} ". Let $a, b \in Z$ coprime, $b \neq 0$. We get

$$g(a/b) = g(a \cdot 1/b) = g(a)g(1/b) = g'(a)g(1/b);$$

it's enough to prove the claim for $1/b \in \mathbb{Q}, b \neq 0$. One has

$$1 = g(b \cdot 1/b) = g(b)g(1/b)$$

and

$$1 = g'(b \cdot 1/b) = g(b)g'(1/b)$$

so g(b) is invertible, and by the unicity of the inverse, g(1/b) = g'(1/b).

- (7) Let $M_{\alpha} = X_1^{\alpha_1} \dots X_n^{\alpha_n}$ for $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$. For a polynomial $f \in A$, denote by $\operatorname{supp}(f)$ the set of the monomials in f, that is, $\operatorname{supp}(f) = \{M_{\alpha} : \alpha \in F\}$ if $f = \sum_{\alpha \in F} \lambda_{\alpha} M_{\alpha}$ ($F \subseteq \mathbb{N}^n$ finite set, $\lambda_{\alpha} \in k$).
 - a. If a monomial M is in I, then there is a finite set $E' \subseteq E$ and polynomials $f_{\alpha}, \alpha \in E'$ such that

$$M = \sum_{\alpha \in E'} f_{\alpha} M_{\alpha}$$

Write $f_{\alpha} = \sum_{\beta \in A_{\alpha}} \lambda_{\alpha}^{\beta} M_{\beta}$ for some finite set $A_{\alpha} \subseteq \mathbb{N}^n$, $\lambda_{\alpha}^{\beta} \in k$ for all $\alpha \in E'$, $\beta \in A_{\alpha}$. Hence

$$M = \sum_{\substack{\alpha \in E'\\\beta \in A_{\alpha}}} \lambda_{\alpha}^{\beta} M_{\alpha+\beta}.$$

Since the monomials in A are linearly independent over k, the monomial M must occur in the RHS, so there are $\alpha \in E'$, $\beta \in A_{\alpha}$ such that

$$M = M_{\alpha+\beta} = M_{\alpha}M_{\beta}.$$

b. Let $f \in I$ with I monomial, $f = \sum_{\text{finite}} \lambda_{\gamma} M_{\gamma}$. Then, using the same notations of a.,

$$\sum_{\text{finite}} \lambda_{\gamma} M_{\gamma} = \sum_{\substack{\alpha \in E' \\ \beta \in A_{\alpha}}} \lambda_{\alpha}^{\beta} M_{\alpha+\beta}.$$

For every γ' , the monomial $M_{\gamma'}$ must occur in the sum $\sum_{\substack{\alpha \in E' \\ \beta \in A_{\alpha}}} \lambda_{\alpha}^{\beta} M_{\alpha+\beta}$,

since

$$\lambda_{\gamma'}M_{\gamma'} = \sum_{\substack{\alpha \in E'\\\beta \in A_{\alpha}}} \lambda_{\alpha}^{\beta}M_{\alpha+\beta} - \sum_{\gamma \neq \gamma'} \lambda_{\gamma}M_{\gamma}$$

and $M_{\gamma'}$ doesn't occur in the second sum on the RHS. So every monomial of f is in I.

$$I = (\operatorname{supp}(f_i))_{i=1,\dots,i}$$

is generated by monomials.

c. Let
$$I = (M_{\alpha})_{\alpha \in E}$$
 and $J = (M_{\beta})_{\beta \in F}$. Clearly one has
 $I + J = ((M_{\alpha}), (M_{\beta}))_{\alpha,\beta};$
 $IJ = (M_{\alpha}M_{\beta})_{\alpha,\beta}.$
Let's show that $I \cap J$ is monomial: if $f \in I \cap J$, then $\operatorname{supp}(f) \subseteq I \cap J$ and we conclude by point b.. For monomials M_{α} and M_{β} let
 $\operatorname{lcm}(M_{\alpha}, M_{\beta}) = X_1^{\max(\alpha_1, \beta_1)} \dots X_n^{\max(\alpha_n, \beta_n)}$ and $\operatorname{gcd}(M_{\alpha}, M_{\beta}) = X_1^{\min(\alpha_n, \beta_n)}.$ As a set of generators we can take

$$I \cap J = (\operatorname{lcm}(M_{\alpha}, M_{\beta}))_{\alpha, \beta}:$$

 (\supseteq) holds in general;

 (\subseteq) by b. it's enough to prove the inclusion for monomials. Let M be a monomial, $M \in I \cap J$. By a., there are α, β such that $M_{\alpha}|M$ and $M_{\beta}|M$ in A, so by definition $lcm(M_{\alpha}, M_{\beta})|M$ in A. In general, it's easy to see that

$$I: J = \bigcap_{\beta \in F} I: M_{\beta}.$$

We now prove that

$$I: M_{\beta} = (M_{\alpha}/\operatorname{gcd}(M_{\alpha}, M_{\beta}))_{\alpha}$$

for every α . Use then the above to find monomial generators for I: J.

 (\supseteq) clear;

 (\subseteq) if a monomial M is in $I: M_{\beta}$, then $MM_{\beta} \in I$, so by a., there are $\alpha \in E, \gamma \in \mathbb{N}^n$ such that $MM_{\beta} = M_{\gamma}M_{\alpha}$. It holds $b_i \leq \gamma_i + \alpha_i$ for all i and

$$M = \frac{M_{\alpha}}{\gcd(M_{\alpha}, M_{\beta})} M'',$$

with $M'' = \frac{M_{\gamma}M_{\alpha}}{\operatorname{lcm}(M_{\alpha},M_{\beta})}$, which is in A since $\max(\alpha_i,\beta_i) \leq \gamma_i + \alpha_i$ for every *i*.

 \sqrt{I} is monomial: let $f \in \sqrt{I}$, with m such that $f^m \in I$. Then supp $(f^m) \subseteq I$; but for every $M_\alpha \in \text{supp}(f)$, $M^m_\alpha \in \text{supp}(f^m)$, hence $M^m_\alpha \in I$ for every $M_\alpha \in \text{supp}(f)$, which means $\text{supp}(f) \subseteq \sqrt{I}$.

Define the "radical" of a monomial M_{α} by

$$\sqrt{M_{\alpha}} := X_1^{\epsilon_1} \dots X_n^{\epsilon_n},$$

where

$$\epsilon_i = \begin{cases} 1 & \text{ if } \alpha_i \ge 1 \\ 0 & \text{ if } \alpha_i = 0. \end{cases}$$

Then

$$I = (\sqrt{M_{\alpha}})_{\alpha} :$$

 (\supseteq) clear since $(\sqrt{M_{\alpha}})^{\sum \alpha_i} \in I$; $(\subseteq) M_{\gamma} \in \sqrt{I}$ with $M_{\gamma}^m \in I$. Then $M_{\gamma}^m = M_{\gamma m} = M_{\gamma'}M_{\alpha}$ for some $\alpha \in E$, $\gamma' \in \mathbb{N}^n$. Note that $M_{\alpha} = \sqrt{M_{\alpha}}M_{\alpha-\epsilon} \ (\alpha_i - \epsilon_i \ge 0)$. Therefore

$$M_{\gamma} = \frac{M_{\gamma}^m}{M_{\gamma}^{m-1}} = \frac{M_{\gamma'}M_{\alpha-\epsilon}}{M_{\gamma(m-1)}}\sqrt{M_{\alpha}}$$

and
$$\frac{M_{\gamma'}M_{\alpha-\epsilon}}{M_{\gamma(m-1)}} \in A$$
 since for $\gamma_i \ge 1$, $(m-1)\gamma_i \le \gamma'_i + \alpha_i - \epsilon_i$.

(8) Clearly $(I:S)S \subseteq I$. Let $J \subseteq A$ be an ideal with $JS \subseteq I$. If $a \in J$, then $aS \subseteq I$, so $a \in (I:S)$. This means that $J \subseteq (I:S)$.