D-MATH HS 2019 Prof. E. Kowalski

Solutions 10

Commutative Algebra

(1) Let $\mathfrak{p} \supset \mathfrak{p}_1 \supset \mathfrak{p}_0$ with \mathfrak{p} not contained in any ideal of S. By the prime avoidence lemma, pick an element

$$a \in \mathfrak{p} - (\mathfrak{p}_0 \cup \bigcup_{\mathfrak{p}' \in S} \mathfrak{p}').$$

Pick also a minimal prime \mathfrak{p}'_1 ,

$$(a) + \mathfrak{p}_0 \subseteq \mathfrak{p}'_1 \subseteq \mathfrak{p}.$$

Then $\mathfrak{p}'_1/\mathfrak{p}_0$ is a minimal prime ideal of $((a) + \mathfrak{p}_0)/\mathfrak{p}_0$ in A/\mathfrak{p}_0 . By the Hauptidealsatz, since $((a) + \mathfrak{p}_0)/\mathfrak{p}_0$ is principal, $\operatorname{ht}(\mathfrak{p}'_1/\mathfrak{p}_0) = 1$. But the chain

$$\mathfrak{p}/\mathfrak{p}_0 \supset \mathfrak{p}_1/\mathfrak{p}_0 \supset \mathfrak{p}_0/\mathfrak{p}_0$$

shows that $\mathfrak{p}/\mathfrak{p}_0$ has height at least 2. Therefore $\mathfrak{p} \supset \mathfrak{p}'_1 \supset \mathfrak{p}_0$ are distinct primes, and $\mathfrak{p}'_1 \notin S$ because it contains a.

For the general case, apply the special case to $\mathfrak{p} \supset \mathfrak{p}_{d-1} \supset \mathfrak{p}_{d-2}$ to obtain a chain $\mathfrak{p} \supset \mathfrak{p}'_{d-1} \supset \mathfrak{p}_{d-2}$ such that \mathfrak{p}'_{d-1} is not contained in any ideal of S. Apply again the special case to $\mathfrak{p}'_{d-1} \supset \mathfrak{p}_{d-2} \supset \mathfrak{p}_{d-1}$ and repeat the argument.

(2) The first inequality follows immediately from the correspondence between ideals in A and in A/\mathfrak{a} .

Let $d := \operatorname{ht}(\mathfrak{p}/\mathfrak{a})$. Then there exist elements a_1, \ldots, a_d in A such that $\mathfrak{p}/\mathfrak{a}$ is a minimal prime ideal of $(\overline{a}_1, \ldots, \overline{a}_d) \subseteq A/\mathfrak{a}$ (as a consequence of the Hauptidealsatz). Let $\mathfrak{a} = (b_1, \ldots, b_n)$. Then \mathfrak{p} is a minimal prime ideal of $(a_1, \ldots, a_d, b_1, \ldots, b_n)$, hence $\operatorname{ht}(\mathfrak{p}) \leq d + n$.

- (3) a. If dim A = 0, then it is regular if and only if its maximal ideal can be generated by the empty set, and so is zero. This means that A is a field.
 - b. Consider $\mathfrak{m}' := \mathfrak{m}/(a)$, the maximal ideal of A/(a). Then by exercise 2

$$\operatorname{ht}(\mathfrak{m}') \leq \operatorname{ht}(\mathfrak{m}) \leq \operatorname{ht}(\mathfrak{m}') + 1.$$

Therefore

$$\dim_k(\mathfrak{m}'/\mathfrak{m}'^2) \ge \operatorname{ht}(\mathfrak{m}')$$
$$\ge \operatorname{ht}(\mathfrak{m}) - 1$$
$$= \dim_k(\mathfrak{m}/\mathfrak{m}^2) - 1$$
$$= \dim_k(\mathfrak{m}'/\mathfrak{m}'^2).$$

Equality must hold throughout.

c. Note that for every $a \in \mathbb{Q}^{\times}$,

$$(X+a)(1/a^2X - 1/a) \equiv 1$$

in A. In particular $(X + a) \in A^{\times}$. This proves that A is local with maximal ideal (X). Also, (X) is a minimal prime of (X^2) , which proves dim A = 0; but $\mu((X)) = 1 > 0$.

- d. A complete proof of this fact can be found in Atiyah-MacDonald, page 123.
- e. Let (x, y) := Q and consider the Q-vector spaces morphism

$$\begin{aligned} \theta_Q : \mathbb{Q}[X,Y] &\longrightarrow \mathbb{Q}^2 \\ g &\longmapsto (\partial_X g_{|_Q}, \partial_Y g_{|_Q}). \end{aligned}$$

It's easy to see that $\theta_Q(P)$ generates \mathbb{Q}^2 and $\theta_Q(P^2) = 0$. Then we can consider the induced map (always denoted by θ_Q)

$$\theta_Q: P/P^2 \longrightarrow \mathbb{Q}^2.$$

Since $\dim_{\mathbb{Q}}(P/P^2) = 2$, θ_Q is an isomorphism of \mathbb{Q} -vector spaces. Note also that

$$\dim_{\mathbb{Q}}((f) + P^2/P^2) = \dim_{\mathbb{Q}}(\theta_Q((f))) = \begin{cases} 1 & \text{if } (\partial_X f_{|_Q}, \partial_Y f_{|_Q}) \neq (0, 0) \\ 0 & \text{otherwise} \end{cases}$$

In the following we'll denote by P both the ideal of $\mathbb{Q}[X, Y]$ and its projection in B. One has

$$PB_P/(PB_P)^2 \simeq (P/P^2) \otimes_B B_P$$
$$\simeq P \otimes_B (B/P)_P$$
$$\simeq P/P^2$$
$$\simeq P/((f) + P^2).$$

By the Q-isomorphism

$$P/P^2 \simeq ((f) + P^2)/P^2 \oplus P/((f) + P^2)$$

we see that

$$\dim_{\mathbb{Q}}(\theta_Q((f))) = 2 - \mu(PB_P)$$

On the other hand

$$1 = \operatorname{ht}(f) = 2 - \dim B = 2 - \dim B_P,$$

 \mathbf{SO}

$$\dim_{\mathbb{Q}}(\theta_Q((f))) = \operatorname{rank}((\partial_X f_{|_Q}, \partial_Y f_{|_Q})) = 1 \Longleftrightarrow B_P \text{ is regular.}$$

(4) The elements $1/p^n$ generate $\mathbb{Z}[1/p]$ over \mathbb{Z} . Every proper subgroup of $\mathbb{Z}[1/p]/\mathbb{Z}$ is of the form N/\mathbb{Z} for a proper subgroup $N \subset \mathbb{Z}[1/p]$ containing \mathbb{Z} . Thus for some $n \geq 0, 1/p^{n+1}$ does not lie in N. A fortiori, for all $m > n, 1/p^m \notin N$. Consider now an arbitrary $a/p^m \in N$, with $p \nmid a$. Pick x and y so that

$$1 = xp^m + ya.$$

Thus

$$1/p^m = x + y(a/p^m) \in N,$$

and so $m \leq n$. In particular $N/\mathbb{Z} \subset \frac{1}{p^n}\mathbb{Z}/\mathbb{Z}$ is finite. We proved that every subgroup of $\mathbb{Z}[1/p]/\mathbb{Z}$ is finite.

Any descending chain of subgroups of $\mathbb{Z}[1/p]/\mathbb{Z}$, after the first nontrivial step there can be only finitely many other non-trivial steps for cardinality reasons. Thus $\mathbb{Z}[1/p]/\mathbb{Z}$ is artinian.

It is not noetherian because the submodules $N_n := p^{-n}\mathbb{Z}/\mathbb{Z}$ form an ascending chain of submodules $0 = N_0 \subset N_1 \subset \ldots$ which doesn not become stationary.