D-MATH HS 2019 Prof. E. Kowalski

Solutions 11

Commutative Algebra

(1) Denote by x, y and z the cosets of X, Y and Z in B. Then B is generated as \mathbb{C} -algebra by x, y, z. They satisfy $f(x, y, z) = x^2y - xy^3 + z^4 - 1 = 0$ and $xy + z^2 = 0$. Let $y_1 := x - z$, $y_2 := y - z$, $y_3 := z$. Then

 $f(y_1 + y_3, y_2 + y_3, y_3) = 0$

and since f is monic in $y_3 = z$, y_3 is integral over $\mathbb{C}[y_1, y_2]$. Hence consider the integral extension $\mathbb{C}[y_1, y_2] \hookrightarrow \mathbb{C}[y_1, y_2, y_3] = B$.

- (2) a. You could also prove it directly, but it follows from the Weak Nullstellensatz: because f is not constant, it is not invertible and therefore is contained in a maximal ideal, which is the ideal of polynomials which are zero evaluated at p for some $p \in V(f)$.
 - b. Assume f is reducible. Since deg f = 2, $f = g_1g_2$ for linear polynomials g_1 and g_2 . The rows of the matrix M are the coefficients of X, Y and the constant coefficient in $\partial f/\partial X$, $\partial f/\partial Y$ and $2f X\partial f/\partial X Y\partial f/\partial X$. Expanding this in g_1 and g_2 , all three are constant linear combinations of g_1 and g_2 ; thus the three rows are linearly independent.
 - c. Assume $f = g^2$. By the same argument as above, the three rows of M are the coefficients of constant multiples of g so that M has rank at most 1.
- (3) Let's proceed by induction on n. The base n = 1 is obvious. Let now n > 1, and note that

$$xA/x^nA \simeq A/x^{n-1}A;$$

hence one has an exact sequence

$$0 \longrightarrow A/x^{n-1}A \longrightarrow A/x^nA \longrightarrow A/xA \longrightarrow 0.$$

By properties of associated primes, and by induction, we get

$$\operatorname{Ass}(A/x^n A) \subseteq \operatorname{Ass}(A/x A) \cup \operatorname{Ass}(A/x^{n-1} A) = \operatorname{Ass}(A/x A).$$

For the other inclusion, if we pick an associated prime \wp of A/xA, it is equivalent to consider an inclusion

$$A/\wp \hookrightarrow A/xA.$$

Since x is not a zero-divisor, the map $A/xA \to A/x^nA$ is injective, so by composing we get

$$A/\wp \hookrightarrow A/x^n A,$$

which means that \wp is an associated prime to $A/x^n A$.