D-MATH HS 2019 Prof. E. Kowalski

Solutions 13

Commutative Algebra

(1) b. Let V be a discrete valuation ring of k(X) for some discrete valuation v, with k ⊆ V ⊂ k(X). Let m be the maximal ideal of V. If X ∈ V, then k[X] ⊆ V. Set ℘ := m ∩ k[X]. Then ℘ is a prime ideal of k[X]. Moreover k[X]_℘ ⊆ V since V is local. If ℘ = 0 one has k[X]_℘ = k(X), but we are assuming the strict inclusion. Hence ℘ ≠ 0, so ℘ = (f) for some f ∈ k[X] irreducible. Because k[X]_(f) is a DVR, by the below lemma V = k[X]_(f), so the valuation v is equivalent to v_f, since they have the same valuation ring.

Suppose now $X \notin V$. Then $X^{-1} \in V$, so $k[X^{-1}] \subseteq V$. Moreover $X \notin V$ means X^{-1} is not a unit in V. So $\mathfrak{m} \cap k[X^{-1}] \supseteq (X^{-1})$, then $\mathfrak{m} \cap k[X^{-1}] = (X^{-1})$ since (X^{-1}) is maximal in $k[X^{-1}]$. Therefore $k[X^{-1}]_{(X^{-1})} \subseteq V$, and again by the lemma below $V = k[X^{-1}]_{(X^{-1})}$, so v is equivalent to v_{∞} .

Lemma. Let $A \subseteq B$ be discrete valuation rings, with L = frac(A) = frac(B). If $A \subseteq B \subset L$, then A = B.

Proof. Let \mathfrak{m} be the maximal ideal of A, and let v be the valuation of L with valuation ring A. Let $\pi \in A$ be a uniformizer, that is $v(\pi) = 1$. Take $b \in B$ and assume v(b) = n. If $n \ge 0$, then $b \in A$. If n < 0, then $v(b\pi^{-n}) = 0$. So $u := b\pi^{-n} \in A^{\times}$.

Thus $\pi^{-1} = u^{-1}b\pi^{-1-n} \in B$ since $u^{-1} \in A \subseteq B$, $b \in B$ and $-1-n \ge n$, so $\pi^{-1-n} \in A$. But since each nonzero element of L can be written as a unit in A times a power of π , B = L, a contradiction to the assumption.

(2) a. Let S be a multiplicative system. The localization $S^{-1}A$ is normal, because A is. Also, any nonzero localization of a noetherian domain is a noetherian domain. It remains to show that $S^{-1}A$ is either a field or of dimension 1. Suppose it is not a field. Then there exists $0 \neq f \in A - S$. Thus $(f/1) \subseteq S^{-1}A$ is a nonzero proper ideal, thus contained in a maximal ideal. Thuis shows that $\dim(S^{-1}A) \geq 1$. The other inequality holds in general by the one-to-one correspondence of prime ideals of $S^{-1}A$ and prime ideals of A which have empty intersection with S.

- b. A is isomorphic to $\mathbb{C}[X, \frac{1-X^4}{X}] = \mathbb{C}[X, X^{-1}] = \mathbb{C}[X]_{(X)}$, which is Dedekind by part a.
- c. A is not Dedekind because it has Krull dimension 2.
- d. A is not Dedekind because it is not normal, for example, the element $Y/X \in \operatorname{frac}(A) A$ is integral over $A: (Y/X)^3 X = 0$.
- (3) a. This is clear, since we require that for a nonzero element of $f \in K$ there is a minimum exponent of t occurring in f.
 - b. It is obviuos that K is a ring. A power series with nonzero constant coefficient is invertible (you can easly check it using the definition), then a multiplicative inverse of $t^n g$ as in part a. is $t^{-n}g^{-1}$.