D-MATH HS 2019 Prof. E. Kowalski

Solutions 2

Commutative Algebra

(1) Assume (A, I) is a local ring. Let $a \in A - A^{\times}$. Then (a) is a proper ideal of A, hence it is contained in I which is the only maximal ideal of A.

Conversely, let \mathfrak{m} be another maximal ideal of A. Clearly $\mathfrak{m} \subseteq A - A^{\times}$, so $\mathfrak{m} \subseteq I$. But I is maximal, then $\mathfrak{m} = I$.

- (2) See Proposition 1.7.2 of Antoine Chambert-Loir, "(Mostly) Commutative Algebra".
- (3) See Proposition 2.2.12 of Antoine Chambert-Loir, "(Mostly) Commutative Algebra".
- (5) This is a consequence of the following facts:
 - For every prime ideal \wp of A, the localization \mathfrak{N}_{\wp} is the nilpotent radical of A_{\wp} .
 - "Being zero for a R-module M is a local property", that is,

 $M = 0 \iff M_{\mathfrak{m}} = 0$ for every \mathfrak{m} maximal ideal of R.

The first fact can be checked elementwise, observing that the nilpotent radical of A_\wp is

$$\bigcap_{\tilde{\mathfrak{p}}\subseteq A_{\wp}}\tilde{\mathfrak{p}}=\bigcap_{\substack{\mathfrak{p}\subseteq A\\\mathfrak{p}\subseteq \wp}}\mathfrak{p}A_{\wp}=\bigcap_{\mathfrak{p}\subseteq A}\mathfrak{p}A_{\wp},$$

since if $\mathfrak{p} \cap (A - \wp) \neq \emptyset$, then $\mathfrak{p}A_{\wp} = A_{\wp}$.

For the second one, suppose there is a $m \in M$, $m \neq 0$. Then $0:_R m$ is a proper ideal of R, thus there exists a maximal ideal \mathfrak{m} of R with $\mathfrak{m} \supseteq 0:_R m$. But by assumption $M_{\mathfrak{m}} = 0$, in particular $\frac{m}{1} = \frac{0}{1}$ in $M_{\mathfrak{m}}$. This means that there is an element $x \notin \mathfrak{m}$ so that xm = 0, i.e. $x \in 0:_R m \subseteq \mathfrak{m}$, contradiction.

Being a zero-divisor is not a local property. Consider as a counterexample, $A = \mathbb{Z}/6\mathbb{Z}$. Clearly A is not an integral domain, but its local rings are. The prime ideals of A are $\wp_1 = 2\mathbb{Z}/6\mathbb{Z}$ and $\wp_2 = 3\mathbb{Z}/6\mathbb{Z}$. The maximal ideal of A_{\wp_1} is

$$\begin{split} \wp_1 A_{\wp_1} &= \{\frac{a}{s} : a \in \wp_1, \ s \notin \wp_1 \} \\ &= \{\frac{0}{1}, \frac{2}{1}, \frac{4}{1}, \frac{0}{3}, \frac{2}{3}, \frac{4}{3}, \frac{0}{5}, \frac{2}{5}, \frac{4}{5} \}. \end{split}$$

You can easily check that every element in $\wp_1 A_{\wp_1}$ is equivalent to $\frac{0}{1}$. A local ring whose maximal ideal is zero is a field, hence an integral domain. Analogously for $\wp_2 A_{\wp_2}$.

(6) Suppose that $\Sigma \neq \emptyset$. Every totally ordered subset Σ_0 of Σ has a maximal element, namely $\bigcup_{I \in \Sigma_0} I$ (check this). Then by Zorn's lemma, Σ has a maximal element \mathfrak{a} .

Suppose that \mathfrak{a} is not a prime ideal. Then there are elements $x, y \notin \mathfrak{a}$, with

 $xy \in \mathfrak{a}$.

The ideal $\mathfrak{a} + (x) \supset \mathfrak{a}$, so $\mathfrak{a} + (x) \notin \Sigma$ by the maximality of \mathfrak{a} . This means that $\mathfrak{a} + (x)$ is finitely generated, say

$$\mathfrak{a} + (x) = (x_1, \dots, x_n, x)$$

with $x_1, \ldots, x_n \in \mathfrak{a}$.

Also, $\mathfrak{a} \subseteq \mathfrak{a} :_A x$ and the inclusion is strict $(y \in \mathfrak{a} :_A x \text{ and } y \notin \mathfrak{a})$. As above, we have that $\mathfrak{a} :_A x$ is finitely generated,

$$\mathfrak{a}:_A x = (y_1, \ldots, y_m)$$

Claim: $\mathfrak{a} = (x_1, \dots, x_n, y_1 x, \dots, y_m x).$ (\supseteq) Clear by definition of the elements $x_1, \dots, x_n, y_1, \dots, y_m$.

 (\subseteq) Let $a \in \mathfrak{a}$. Write $a + x \in \mathfrak{a} + (x)$ as

$$a + x = \sum a_i x_i + bx$$

with $a_i, b \in A$. Then

$$(1-b)x = \sum a_i x_i - a \in \mathfrak{a}$$
$$\Longrightarrow 1 - b \in \mathfrak{a} :_A x$$
$$\Longrightarrow 1 - b = \sum c_i y_i$$

 $\mathbf{2}$

for some $c_i \in A$. by multiplying both sides in the last equation by x we obtain

$$a = \sum a_i x_i - \sum c_i y_i x.$$

Thus ${\mathfrak a}$ is finitely generated, a contradiction.