D-MATH
HS 2019
Prof. E. Kowalski

Solutions 3

(1) a. Let $x=\sum_{i=1}^{2} x^{i} e_{i}$ and $y=\sum_{i=1}^{2} y^{i} e_{i}$. Then $x \otimes y=\sum_{i, j} x^{i} y^{j} e_{i} \otimes$ e_{j}. By applying ϕ one has

$$
\begin{aligned}
\phi(x \otimes y) & =\sum_{i, j} x^{i} y^{j} \phi\left(e_{i} \otimes e_{j}\right) \\
& =x^{1} y^{1} f_{1}+x^{1} y^{2} f_{2}+x^{2} y^{1} f_{3}+x^{2} y^{2} f_{4}
\end{aligned}
$$

Hence $\phi(x \otimes y)=a f_{1}+b f_{2}+c f_{3}+d f_{4}$ if and only if

$$
\begin{array}{ll}
x^{1} y^{1}=a & x^{1} y^{1}=b \\
x^{2} y^{1}=c & x^{2} y^{2}=d,
\end{array}
$$

which implies $a d=b c$. On the other hand, if $a d=b c, a, b \neq 0$, pick $x^{1}=1, x^{2}=c / a=d / b, y^{1}=a$ and $y^{2}=b$. Similarly for the other possibilities for a, b, c, d.
b. Let $u=u_{1} \otimes u_{2}: \mathbb{R}^{2} \otimes \mathbb{R}^{2} \rightarrow \mathbb{R}^{2} \otimes \mathbb{R}^{2}$. Then the matrix of u is given by the components of $u\left(f_{i}\right)$ with respect to the basis $\left(f_{i}\right)_{i}$:

$$
\begin{aligned}
& u\left(e_{1} \otimes e_{1}\right)=u_{1}\left(e_{1}\right) \otimes u_{2}\left(e_{1}\right)=(1,0) \otimes(-1,2)=-f_{1}+2 f_{2} \\
& u\left(e_{1} \otimes e_{2}\right)=4 f_{1}+3 f_{2} \\
& u\left(e_{2} \otimes e_{1}\right)=-2 f_{1}+4 f_{2}-3 f_{3}+6 f_{4} \\
& u\left(e_{2} \otimes e_{2}\right)=8 f_{1}+6 f_{2}+12 f_{3}+9 f_{4} .
\end{aligned}
$$

Therefore

$$
u=\left(\begin{array}{cccc}
-1 & 4 & -2 & 8 \\
2 & 3 & 4 & 6 \\
0 & 0 & -3 & 12 \\
0 & 0 & 6 & 9
\end{array}\right)
$$

(2) a. Let $\phi: F \rightarrow E$ be linear of rank 1, i.e. $\operatorname{dim}(\operatorname{im} \phi)=1$. Then $\operatorname{im} \phi=<\phi(\bar{f})>_{K}$ with \bar{f} any element not in the kernel of ϕ. For every $f \in F$, one has

$$
\phi(f)=\eta_{f} \phi(\bar{f})
$$

for an $\eta_{f} \in K$. Define $\lambda \in F^{\prime}$ by $\lambda(f)=\eta_{f}$ for all $f \in F$. The map λ is linear since

$$
\begin{aligned}
\phi(\eta f+\mu g) & =\eta \phi(f)+\mu \phi(g) \\
& =\left(\eta \eta_{f}+\mu \mu_{g}\right) \phi(\bar{f})
\end{aligned}
$$

for $f, g \in F, \eta, \mu \in K$; so

$$
\lambda(\eta f+\mu g)=\eta \eta_{f}+\mu \mu_{g}=\eta \lambda(f)+\mu \lambda(g)
$$

One then has

$$
\phi=u_{\lambda, \phi(\bar{f})} .
$$

b. Consider the commutative diagram, given by the bilinearity of $\phi:(\lambda, x) \mapsto u_{\lambda, x}$,

If $\lambda(f) x=0$ for all $f \in F$ then either $x=0$ or $\lambda(f)=0$ for all f, i.e. $\lambda=0$. Hence $\lambda \otimes x=0$, which means that ϕ is injective, and so it's an isomorphism since the two vector spaces have the same dimension.
c. Let $\left(e_{1}, \ldots, e_{n}\right)$ and $\left(f_{1}, \ldots, f_{n}\right)$ be basis of E and F, respectively $(n, m \geq 2)$. The element

$$
f_{1} \otimes e_{1}+f_{2} \otimes e_{2}
$$

is not a pure tensor. If $f_{1} \otimes e_{1}+f_{2} \otimes e_{2}=f \otimes e$ for some $f \in F, e \in E$, then write $f=\sum \lambda^{i} f_{i}$ and $e=\sum \eta^{i} e_{i}$. It must be

$$
\left\{\begin{array}{l}
\lambda^{1} \eta^{1}=1 \\
\lambda^{2} \eta^{2}=1 \\
\lambda^{1} \eta^{2}=0 \\
\lambda^{2} \eta^{1}=0
\end{array}\right.
$$

which has no solutions in K.
d. The map $<,>: E^{\prime} \otimes E \rightarrow K$ is simply given as solutin of the universal problem, since the pairing $E^{\prime} \times E \rightarrow K$ is bilinear. By composing:

Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of E. If $f \in \operatorname{End}_{K}(E)$, then $\operatorname{im}(f)$ is generated by $f\left(e_{1}\right), \ldots, f\left(e_{n}\right)$. Write, for $i=1, \ldots, n$

$$
\phi\left(e_{i}\right)=\sum_{j} a_{i j} e_{j}
$$

with $a_{i j} \in K$. Then for $e \in E$, there are $\alpha_{e}^{j} \in K$ so that

$$
\begin{aligned}
f(e) & =\sum_{j} \alpha_{e}^{j} \phi\left(e_{j}\right) \\
& =\sum_{i}\left(\sum_{j} \alpha_{e}^{j} a_{j i}\right) e_{i} \\
& =\sum_{i} u_{\lambda_{i}, e_{i}}
\end{aligned}
$$

with $\left(\lambda_{i}: e \mapsto \sum_{j} \alpha_{e}^{j} a_{j i}\right) \in E^{\prime}$. Therefore

$$
f \stackrel{\phi}{\longmapsto} \sum_{i} \lambda_{i} \otimes e_{i} \stackrel{<,>}{\longmapsto} \sum_{i} \lambda_{i}\left(e_{i}\right)=\sum_{i} a_{i i},
$$

so

$$
<,>\circ \phi=\operatorname{trace}(\cdot)
$$

e. Let $L^{2}(E, F ; K)$ be the space of K-bilinear maps $E \times F \rightarrow K$. Consider the composition of isomorphisms

$$
\begin{aligned}
E^{\prime} \otimes_{K} & F^{\prime} \\
& \longrightarrow \operatorname{Hom}_{K}\left(E, F^{\prime}\right)=\operatorname{Hom}_{K}\left(E, \operatorname{Hom}_{K}(F, K)\right) \\
& \longrightarrow L^{2}(E, F ; K) \longrightarrow \operatorname{Hom}_{K}\left(E \otimes_{K} F, K\right)=(E \otimes F)^{\prime}
\end{aligned}
$$

given by

$$
\lambda \otimes \mu \longmapsto u_{\lambda, \mu} \longmapsto\left((e, f) \mapsto u_{\lambda, \mu}(e)(f)\right) \longmapsto\left(e \otimes f \mapsto u_{\lambda, \mu}(e)(f)\right) .
$$

(3) For any A-module P and for any bilinear map $M \times N \xrightarrow{f} P$ there is a linear \tilde{f} so that the following diagram commutes

Let P be the A-submodule of $M \otimes_{A} N$ generated by $(\beta(m, n))_{(m, n) \in M \otimes_{A} N}$ and $f(m, n)=\beta(m, n)$. Then there is a unique g so that $g \circ \beta=\beta$. In particular g is surjective on P, and so also injective (the inverse is the natural inclusion $\left.P \hookrightarrow M \otimes_{A} N\right)$. Hence $M \otimes_{A} N \simeq P$.
(4) The map b is bilinear, so again $\tilde{b}: L\left(X_{1}\right) \otimes_{\mathbb{C}} L\left(X_{2}\right) \longrightarrow L\left(X_{1} \times X_{2}\right)$ is the solution of the universal problem. It's easy to check that \tilde{b} is injective. Note also that $\operatorname{dim} L\left(X_{i}\right)=\left|X_{i}\right|$ (show for example that if $X_{i}=\left\{x_{1}, \ldots, x_{n}\right\},\left(f_{j}\right)_{j=1, \ldots,\left|X_{i}\right|}$ with $f_{j}(x)=\left\{\begin{array}{ll}1 & \text { if } x=x_{j} \\ 0 & \text { otherwise }\end{array}\right.$ is a basis of $L\left(X_{i}\right)$). Thus

$$
\operatorname{dim}_{\mathbb{C}}\left(L\left(X_{1}\right) \otimes_{\mathbb{C}} L\left(X_{2}\right)\right)=\operatorname{dim}_{\mathbb{C}}\left(X_{1} \times X_{2}\right)
$$

so \tilde{b} is an isomorphism.
(5) b. The map

$$
\begin{aligned}
M \times N \times P & \longrightarrow M \otimes(N \otimes P) \\
(m, n, p) & \longmapsto m \otimes(n \otimes p)
\end{aligned}
$$

is 3 -linear, so fixing $p \in P$ we have a bilinear

$$
\begin{aligned}
\phi_{p}: M \times N & \longrightarrow M \otimes(N \otimes P) \\
(m, n) & \longmapsto m \otimes(n \otimes p)
\end{aligned}
$$

which induces a linear

$$
\begin{aligned}
& \tilde{\phi}_{p}: M \otimes N \longrightarrow M \otimes(N \otimes P) \\
& m \otimes n \longmapsto m \otimes(n \otimes p) .
\end{aligned}
$$

Now consider the bilinear

$$
\begin{aligned}
(M \otimes N) \times P & \longrightarrow M \otimes(N \otimes P) \\
(m \otimes n, p) & \longmapsto \tilde{\phi}_{p}(m \otimes n) ;
\end{aligned}
$$

it iduces a linear map

$$
\begin{aligned}
& f:(M \otimes N) \otimes P \longrightarrow M \otimes(N \otimes P) \\
& \quad(m \otimes n) \otimes p \longmapsto \tilde{\phi}_{p}(m \otimes n)=m \otimes(n \otimes p) .
\end{aligned}
$$

Similarily ther is a linear map

$$
\begin{aligned}
g: M \otimes(N \otimes P) & \longrightarrow(M \otimes N) \otimes P \\
m \otimes(n \otimes p) & \longmapsto(m \otimes n) \otimes p .
\end{aligned}
$$

One has $f \circ g(m \otimes(n \otimes p))=m \otimes(n \otimes p)$ and $g \circ f((m \otimes n) \otimes p)=$ $(m \otimes n) \otimes p$. Since the pure tensors span the two modules, these identities extend by linearity to show that f and g are inverse functions.
a. Use the universal property for $M \otimes N$ and $N \otimes M$ and show that the two linear maps are inverse.
(6) In $\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$ one has

$$
2 \otimes[1]=1 \otimes 2[1]=1 \otimes[0]=0
$$

In general, for an A-module M we have a canonical isomorphism of A-modules

$$
\begin{aligned}
& \phi: M \otimes_{A} A / I \longrightarrow M / I M \\
& m \otimes[a] \longmapsto[a m] .
\end{aligned}
$$

So in our case

$$
2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z} \simeq 2 \mathbb{Z} /(2) 2 \mathbb{Z} \simeq 2 \mathbb{Z} / 4 \mathbb{Z}
$$

and via $\phi, 2 \otimes[1]$ is sent to $[2] \in 2 \mathbb{Z} / 4 \mathbb{Z}$, which is not 0 , so $2 \otimes[1]$ is not 0 in $2 \mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Z} / 2 \mathbb{Z}$.

