D-MATH HS 2019 Prof. E. Kowalski

Solutions 5

Commutative Algebra

(1) a. For all $b \in B$ the map

$$\varphi_b: M \times N \longrightarrow M \otimes_A N$$

$$(m,n) \longmapsto bm \otimes n$$

is A-bilinear, so there is a unique A-linear map

$$\varphi_b: M \otimes_A N \longrightarrow M \otimes_A N$$

sending $m \otimes n$ to $bm \otimes n$ for all $b \in B$, $m \in M$, $n \in N$. It's easy to check that φ_b is also B-linear, so the ring morphism

$$B \longrightarrow \operatorname{End}_{\mathbb{Z}}(M \otimes_A N)$$
$$b \longmapsto \varphi_b$$

defines the unique B-module structure with the desired property.

b. By the universal property, there is a unique A-linear map

$$\varphi: M \times N \longrightarrow M \otimes_B (B \otimes_A N)$$
$$m \otimes n \longmapsto m \otimes (1 \otimes n).$$

For all $b \in B$, $m \in M$, $n \in N$,

$$\varphi(b(m \otimes n)) = \varphi(bm \otimes n)$$

$$= bm \otimes (1 \otimes n)$$

$$= b(m \otimes (1 \otimes n)) = b\varphi(m \otimes n),$$

so φ is B-linear. The inverse is the B-linear map given by the B-bilinearity of

$$M \times (B \otimes_A N) \longrightarrow M \otimes_A N$$

 $(m, b \otimes n) \longmapsto bm \otimes n.$

(2) Fix an A-isomorphism $\varphi: M \to N$. Pick a maximal ideal \mathfrak{m} of $A \neq 0$. Then $k := A/\mathfrak{m}$ is an A-module, and the map

$$id_k \otimes \varphi : k \otimes_A M \longrightarrow k \otimes_A N$$
$$\lambda \otimes m \longmapsto \lambda \otimes \varphi(m)$$

is k-linear. If $(e_i)_{i=1,\ldots,m}$ is a basis of M over A, then $([e_i])_i$ is a basis of $M/\mathfrak{m}M \sim k \otimes_A M$ over k, thus $\dim_k M/\mathfrak{m}M = m$ and analogously $\dim_k N/\mathfrak{m}N = n$.

To conclude, note that the inverse of $\mathrm{id}_k \otimes \varphi$ is $\mathrm{id}_k \otimes \varphi^{-1}$, so $\mathrm{id}_k \otimes \varphi$ is an isomorphism of k-vector spaces, which implies m = n.

(3) a. Denote by

$$\varphi_1: K \longrightarrow \operatorname{End}_{\mathbb{Z}}(E \otimes_A F)$$
$$\lambda \longmapsto (e \otimes f \stackrel{\varphi_{\lambda}}{\mapsto} \lambda e \otimes f)$$

and

$$\varphi_2: K \longrightarrow \operatorname{End}_{\mathbb{Z}}(E \otimes_A F)$$

$$\lambda \longmapsto (e \otimes f \stackrel{\varphi^{\lambda}}{\mapsto} e \otimes \lambda f)$$

the two K-vector space stuctures on $E \otimes_A F$.

Pick basis $(e_i)_i$ of E and $(f_j)_j$ of F. Write and element $e \otimes f \in (E \otimes_A F)^{\varphi_1}$ as

$$e \otimes f = \sum \frac{a_{ij}}{b_{ij}} e_i \otimes f_j,$$

with $a_{ij}, b_{ij} \in A, b_{ij} \neq 0$. Define

$$\alpha: E \otimes_A F \longrightarrow E \otimes_A F$$

by

$$\alpha(e \otimes f) = \sum e_i \otimes \frac{a_{ij}}{b_{ij}} f_j.$$

Then clearly α is an isomorphism of k-vector spaces, and for all $\lambda \in K$, the following diagram commutes:

$$E \otimes_A F \xrightarrow{\alpha} E \otimes_A F$$

$$\downarrow^{\varphi_{\lambda}} \qquad \qquad \downarrow^{\varphi^{\lambda}}$$

$$E \otimes_A F \xrightarrow{\alpha} E \otimes_A F$$

i.e. $\varphi^{\lambda} \circ \alpha = \alpha \circ \varphi_{\lambda}$ for all $\lambda \in K$, which means that φ_1 and φ_2 define the same k-vector space structure.

b. Consider the map

$$\varphi: E \times F \longrightarrow E \otimes_A F$$
$$(e, f) \longmapsto e \otimes f$$

and the diagram

Observe that φ to $(E \otimes_A F)^{\varphi_1}$ is linear of the first component, but $\alpha \circ \varphi$ is linear on the second component, and vice versa. Since in $E \otimes_K F$, $\lambda(e \otimes f) = \lambda e \otimes f = e \otimes \lambda f$ for all $\lambda \in K$, $e \in E$, $f \in F$, there is an induced K-linear map

$$E \otimes_K F \longrightarrow E \otimes_A F$$
.

The inverse is the induced A-linear map by

$$E \times F \longrightarrow E \otimes_K F$$
$$(e, f) \longmapsto e \otimes f,$$

which turns out to be K-linear, too.

(4) Define

$$\Phi: \operatorname{Hom}_A(M \otimes_A N, L) \longrightarrow \operatorname{Hom}_A(M, \operatorname{Hom}_A(N, L))$$
$$\phi \longmapsto (m \mapsto (n \mapsto \phi(m \otimes n)))$$

and

$$\Psi: \operatorname{Hom}_{A}(M, \operatorname{Hom}_{A}(N, L)) \longrightarrow \operatorname{Hom}_{A}(M \otimes_{A} N, L)$$
$$\psi \longmapsto (m \otimes n \mapsto \psi(m)(n)).$$

Then Φ and Ψ are morphisms of A-modules, mutually inverse:

$$\Psi \circ \Phi(\phi) = (m \otimes n \mapsto \Phi(\phi)(m)(n)) = (m \otimes n \mapsto \phi(m \otimes n)) = \phi$$

$$\Phi \circ \Psi(\psi) = (m \mapsto (n \mapsto \Psi(\psi)(m \otimes n))) = (m \mapsto (n \mapsto \psi(m)(n))) = \psi.$$

a. Let $(e_i)_{i\in I}$ be a basis of F, free A-module. Then by the universal property of free modules, a choice of a set $\{m_i: i\in I\}$ of M defines a unique A-linear morphism $h\in \operatorname{Hom}_A(F,M)$ by $h(e_i)=m_i$ for all $i\in I$. Hence choose $m_i\in M$ so that $f(m_i)=g(e_i)$. Then

$$f(h(e_i)) = f(m_i) = g(e_i) \ \forall i \in I,$$

which implies that $f \circ h = g$.

b. Pick a system of generators $(m_i)_{i\in I}$ of M (at worst take all the elements of M). Let X be the free A-module A^I with basis $(e_i)_{i\in I}$, and

$$\varepsilon: X \longrightarrow M$$
 $e_i \longmapsto m_i$.

c. Note that \mathbb{Q} as \mathbb{Z} -module is generated by $\{\frac{1}{n}: n \in \mathbb{N}_{>0}\}$;

$$\bigoplus_{i d_{\mathbb{Q}}} \bigoplus_{i d_{\mathbb{Q}}}$$

$$\bigoplus_{n > 0} \mathbb{Z} \xrightarrow{f} \mathbb{Q}$$

Using the universal property, let

$$f: M \longrightarrow \mathbb{Q}$$
$$e_n \longmapsto \frac{1}{n}.$$

If there's a \mathbb{Z} -linear map $h:\mathbb{Q}\to M$, then for all $\frac{a}{b}\in\mathbb{Q}$ and for all n>0,

$$h\left(\frac{a}{b}\right) = nh\left(\frac{a}{nb}\right).$$

But $h\left(\frac{a}{b}\right)$ is a "vector" of integers, so the only possibility is $h\left(\frac{a}{b}\right) = 0$ for all $\frac{a}{b} \in \mathbb{Q}$, so there is not a map h so that the above diagram commutes.